Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
22 вопрос
Условия существования тройного интеграла
Для тройного интеграла аналогично случаю двойного интеграла вводятся понятия нижней и верхней сумм Дарбу:
где , .
Теорема 1 (необходимое и достаточное условие интегрируемости). Для того, чтобы ограниченная функция f(x;y;z) была интегрируема на замкнутой кубируемой области (V), необходимо и достаточно, чтобы .
Теорема 2 (достаточное условие интегрируемости). Всякая непрерывная на замкнутой кубируемой области (V) функция интегрируема на ней.
Теорема 3 (необходимое условие интегрируемости). Если функция f(x;y;z) интегрируема на (V), то она ограничена на (V). (Обратное неверно.)
Свойства тройного интеграла аналогичны свойствам двойного интеграла.
1. Вычисление тройного интеграла сведением к повторному
Пусть функция f(x;y;z) непрерывна в некоторой области (V). Пусть поверхность (S), ограничивающая тело (V), пересекается не более чем в двух точках любой прямой, параллельной одной из осей координат (например Oz). Более сложные области сводятся к рассматриваемой путем разбиения на части.
Опишем около тела (V) цилиндрическую поверхность с образующей, параллельной оси Oz. Пусть (Pz) - проекция тела (V) на плоскость XOY. Линия касания этой цилиндрической поверхности с поверхностью (S) разбивает (S) на две части: верхнюю и нижнюю. Пусть нижняя часть поверхности задана уравнением z=z1(x;y), а верхняя уравнением z=z2(x;y), где z1(x;y), z2(x;y) - однозначные непрерывные функции, заданные на (Pz). Тогда сводится к последовательному взятию внутреннего интеграла по переменной z (при постоянных x и y) и внешнего двойного интеграла по области (Pz):
A
B
(Pz)
y=y1(x)
y=y2(x)
z=z1(x;y)
z=z2(x;y)
a
b
x
y
z
0
Предположим теперь, что область (Pz) тоже имеет простую форму, то есть любая прямая, параллельная оси Oy, пересекает контур области (Pz) не более, чем в двух точках. Через a и b обозначим абсциссы самой левой и самой правой точек на контуре области (Pz). Эти точки делят контур на две части, на одной из которых прямые параллельные оси Oy входят в область (Pz), а на другой выходят. Каждая из этих частей имеет свое уравнение. Первая: y=y1(x), вторая: y=y1(x) (axb). В этом случае
,
a
b
x
0
y
z
(Py)
(V)
z=z2(x)
z=z1(x)
y=y2(x;z)
y=y1(x;z)
то есть тройной интеграл сводится к последовательному вычислению трех определенных интегралов.
Порядок интегрирования может быть другим. Для этого тело (V) надо проектировать на плоскость XOZ или YOZ. Например, спроектируем на XOZ, (Ру) - проекция на XOZ. Тогда
==
.