У вас вопросы?
У нас ответы:) SamZan.net

Теорема 1 необходимое и достаточное условие интегрируемости

Работа добавлена на сайт samzan.net: 2015-07-10

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 4.4.2025

22 вопрос

Условия существования тройного интеграла

Для тройного интеграла аналогично случаю двойного интеграла вводятся понятия нижней и верхней сумм Дарбу:

где ,  .

Теорема 1 (необходимое и достаточное условие интегрируемости). Для того, чтобы ограниченная функция f(x;y;z) была интегрируема на замкнутой кубируемой области (V), необходимо и достаточно, чтобы .

Теорема 2 (достаточное условие интегрируемости). Всякая непрерывная на замкнутой кубируемой области (V) функция интегрируема на ней.

Теорема 3 (необходимое условие интегрируемости). Если функция f(x;y;z) интегрируема на (V), то она ограничена на (V). (Обратное неверно.)

Свойства тройного интеграла аналогичны свойствам двойного интеграла.

1. Вычисление тройного интеграла сведением к повторному

Пусть функция f(x;y;z) непрерывна в некоторой области (V). Пусть поверхность (S), ограничивающая тело (V), пересекается не более чем в двух точках любой прямой, параллельной одной из осей координат (например Oz). Более сложные области сводятся к рассматриваемой путем разбиения на части.

Опишем около тела (V) цилиндрическую поверхность с образующей, параллельной оси Oz. Пусть (Pz) - проекция тела (V) на плоскость XOY. Линия касания этой цилиндрической поверхности с поверхностью (S) разбивает (S) на две части: верхнюю и нижнюю. Пусть нижняя часть поверхности задана уравнением z=z1(x;y), а верхняя – уравнением z=z2(x;y), где z1(x;y), z2(x;y) - однозначные непрерывные функции, заданные на (Pz). Тогда сводится к последовательному взятию внутреннего интеграла по переменной z (при постоянных x и y) и внешнего двойного интеграла по области (Pz):

A

B

(Pz)

y=y1(x)

y=y2(x)

z=z1(x;y)

z=z2(x;y)

a

b

x

y

z

0

Предположим теперь, что область (Pz) тоже имеет простую форму, то есть любая прямая, параллельная оси Oy, пересекает контур области (Pz) не более, чем в двух точках. Через a и b обозначим абсциссы самой левой и самой правой точек на контуре области (Pz). Эти точки делят контур на две части, на одной из которых прямые параллельные оси Oy входят в область (Pz), а на другой – выходят. Каждая из этих частей имеет свое уравнение. Первая: y=y1(x), вторая: y=y1(x) (axb). В этом случае

,

a

b

x

0

y

z

(Py)

(V)

z=z2(x)

z=z1(x)

y=y2(x;z)

y=y1(x;z)

то есть тройной интеграл сводится к последовательному вычислению трех определенных интегралов.

Порядок интегрирования может быть другим. Для этого тело (V) надо проектировать на плоскость XOZ или YOZ. Например, спроектируем на XOZ, (Ру) - проекция на XOZ. Тогда

==

.




1. ТЕМА 2 Эволюция управленческой мысли В течении XX столетия наука и практика менеджмента выработала три ос
2. вступлением в Таможенный союз
3. IХ вв. Общественный строй Восточных славян VIII IХ вв.
4. ТЕМА ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ Совершенствование инвестиционной политики Республики Тыва Тема
5. Нравится ли вам быть вместе
6. Основанием прямой четырехугольной призмы является ромб с углом в 600
7. Таблица 1 ~ Соотношение надземной и подземной фитомассы Vccinium myrtillus L
8. тематизируйте его периоды 1 3 Казахстан в эпоху бронзы
9. потери в меди на нагрев обмоток при прохождении по ним тока это обычные потери вызванные активным сопрот
10. ВАРИАНТ 6 Часть 1 При выполнении заданий этой части в бланке ответов 1 под номером выполняемого