Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
ВЫЧИСЛЕНИЕ СОБСТВЕННЫХ ЗНАЧЕНИЙ И СОБСТВЕННЫХ ВЕКТОРОВ МАТРИЦ.
Большое число задач математики и физики требует отыскания собственных значений и собственных векторов матриц, т.е. отыскания таких значений +, для которых существуют нетривиальные решения однородной системы линейных алгебраических уравнений
, (1)
и отыскания этих нетривиальных решений.
Здесь -квадратная матрица порядка m , - неизвестный вектор - столбец.
Из курса алгебры известно, что нетривиальное решение системы (1) существует тогда и только тогда, когда
, (2)
где Е - единичная матрица. Если раскрыть определитель , получается алгебраическое уравнение степени m относительно .Таким образом задача отыскания собственных значений сводится к проблеме раскрытия определителя по степеням и последующему решению алгебраического уравнения m- й степени.
Определитель называется характеристическим (или вековым ) определителем, а уравнение (2) называется характеристическим (или вековым ) уравнением.
Различают полную проблему собственных значений, когда необходимо отыскать все собственные значения матрицы А и соответствующие собственные векторы, и частичную проблему собственных значений, когда необходимо отыскать только некоторые собственные значения, например, максимальное по модулю собственное значение .
Метод Данилевского развертывание векового определителя.
Определение. Квадратная матрица Р порядка m называется подобной матрице А , если она представлена в виде
,
где S - невыродженная квадратная матрица порядка m.
ТЕОРЕМА. Характеристический определитель исходной и подобной матрицы совпадают .
Доказательство.
Идея метода Данилевского состоит в том, что матрица А подобным преобразованиям приводится, к так называемой нормальной форме Фробениуса
.
Характеристическое уравнение для матрицы Р имеет простой вид
т.е. коэффициенты при степенях характеристического полинома непосредственно выражаются через элементы первой строки матрицы Р.
Приведение матрицы А к нормальной форме Фробениуса Р осуществляется последовательно построкам, начиная с последеней строки.
Приведем матрицу А
подобным преобразование к виду
Пусть Можн проверить,что такой вид имеет матрица , которая равна
где
Слудующий шаг - приведение матрицы подобным преобразованием к виду , где и вторая снизу строка имеет единицу в -ом столбце, а все остальные элементы строки равны нулю:
Если то можно проверить, что такой вид имеет матрица :
где
Таким образом
Далее процедура аналогичная, если на кождом шаге в очередной строке, на месте которого подобным преобразованием нужно получить единицу, не равную нулю.
В этом случае ( будем называт его регулярным ) нормальная формула Фробениуса будет получена за ( m-1 ) шагов и будет иметь вид
Рассмотрим нерегулярный случай, когда матрица, полученная в результате подобных преобразований приведена уже к виду
и элемент . Таким образом обычная процедура метода Данилевского не подходит из-за необходимости деления на ноль.
В этой ситуации возможно два случая. В первом случае к-й
строке левее элемента есть элемент
Тогда домножая матрицу слева и справа на элементарную матрицу перестановок , получаем матрицу
,
у которой по сравнению с матрицей переставлены l -я и (k-1 )-я строка l-й и ( k-1)- й стодбец. В результате на необходимом нам месте оказывается ненулевой элемент , уже преобразованная часть матрицы не меняется, можно применять обычный шаг метода Данилевского к матрице . Она подбна матрице (и, следовательно, исходной матрице А ), т.к. елементарная матрица перестановок совпадает со своей обратной, т.е.
Рассмотрим второй нерегулярный случай, когда в матрице элемент и все элементы этой строки, которые тоже находятся левее его, тоже равны нулю. В этом случае характеристический определитель матрицы можно представить в виде
где і - единичные матрицы соответствующей размерности, а квадратные матрицы и имееют вид:
Обративм внимание на то, что матрица уже нормальную форму Фробениуса, и поэтому сомножитель просто развертывается в виде многочлена с коэффциентами, равными элементам первой строки.
Сомножитель , есть характеристический определитель матрицы . Для развертывания можн опять применять метод Данилевского, приводя матрицу подобными преобразованиями к нормальной форме Фробениуса.
Предположим теперь, что матрица А подобным преобразованиям
уже приведена к нормальной форме Фробениуса. Решая характеристическое уравнение
,
находим одним из известных методов его корни которые являются собственными значениями матрицы Р и исходной матрицы А.
Теперь стоит задача отыскать собственные векторы, соответствующие этим собственным значениям, т.е. векторы такие, что
Решим ее следующим образом: найдем собственные векторы матрицы Р , а затем по определенному соотношению я пересчитаем собственные векторы матрицы А . Это соотношение дает следующая теорема.
ТЕОРЕМА. Пусть є есть собственное значение , а есть соответствующий собственный вектор матрицы Р , которая подобна матрице А ,т.е.
Тогда есть собственный вектор матрицы А , соответствующий собственному значению
Доказательство.Тривиально следует из того, что
Домножая левую и правую часть этого равенства слева на S ,
имеем
А это и означает, что -собственный вектор матрицы А ,
отвечающий собственному значению
Найдем собственный вектор матрицы Р , которая имеет нормальную форму Фробениуса и подобна матрице А. Записывая в развернутой форме, имеем
или
В этой системе одна из переменных может быть сделана свободной и ей может быть придано произвольное значение. В качестве таковой возьмем и положим
Тогда последовательно находим
,
т.е. искомый собственный вектор матрицы Р имеет вид
.
Если процесс приведения матрицы А к форме Р был регулярным, то
В соответствии с теоремой собственным вектором матрицы А для собственного значения будет вектор
Таким образом, задача вычисления собственных векторов матрицы А решена.