Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Связано это с тем что удобно представлять информацию в виде последовательности электрических импульсов- и

Работа добавлена на сайт samzan.net: 2015-07-05

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 20.5.2024

Кодирование информации в компьютере

Современный компьютер может обрабатывать числовую, текстовую, графическую, звуковую и видео информацию. Все эти виды информации в компьютере представлены в двоичном коде, т. е. используется алфавит мощностью два символа (0 и 1). Связано это с тем, что удобно представлять информацию в виде последовательности электрических импульсов: импульс отсутствует (0), импульс есть (1). Такое кодирование принято называть двоичным, а сами логические последовательности нулей и единиц - машинным языком.

Каждая цифра машинного двоичного кода несет количество информации равное одному биту.

Данный вывод можно сделать, рассматривая цифры машинного алфавита, как равновероятные события. При записи двоичной цифры можно реализовать выбор только одного из двух возможных состояний, а, значит, она несет количество информации равное 1 бит. Следовательно, две цифры несут информацию 2 бита, четыре разряда --4 бита и т. д. Чтобы определить количество информации в битах, достаточно определить количество цифр в двоичном машинном коде.

Кодирование текстовой информации

В настоящее время большая часть пользователей при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др.

На основании одной ячейки информационной ёмкостью 1 бит можно закодировать только 2 различных состояния. Для того чтобы каждый символ, который можно ввести с клавиатуры в латинском регистре, получил свой уникальный двоичный код, требуется 7 бит. На основании последовательности из 7 бит, в соответствии с формулой Хартли, может быть получено N=27=128 различных комбинаций из нулей и единиц, т.е. двоичных кодов. Поставив в соответствие каждому символу его двоичный код, мы получим кодировочную таблицу. Человек оперирует символами, компьютер – их двоичными кодами.

Для латинской раскладки клавиатуры такая кодировочная таблица одна на весь мир, поэтому текст, набранный с использованием латинской раскладки, будет адекватно отображен на любом компьютере. Эта таблица носит название ASCII (American Standard Code of Information Interchange) по-английски произносится [э́ски], по-русски произносится [а́ски]. Ниже приводится вся таблица ASCII, коды в которой указаны в десятичном виде. По ней можно определить, что когда вы вводите с клавиатуры, скажем, символ “*”, компьютер его воспринимает как код 42(10), в свою очередь 42(10)=101010(2) – это и есть двоичный код символа “*”. Коды с 0 по 31 в этой таблице не задействованы.

Таблица символов ASCII

код

символ

код

символ

код

символ

код

символ

код

символ

код

символ

32

Пробел

48

.

64

@

80

P

96

'

112

p

33

!

49

0

65

A

81

Q

97

a

113

q

34

"

50

1

66

B

82

R

98

b

114

r

35

#

51

2

67

C

83

S

99

c

115

s

36

$

52

3

68

D

84

T

100

d

116

t

37

%

53

4

69

E

85

U

101

e

117

u

38

&

54

5

70

F

86

V

102

f

118

v

39

'

55

6

71

G

87

W

103

g

119

w

40

(

56

7

72

H

88

X

104

h

120

x

41

)

57

8

73

I

89

Y

105

i

121

y

42

*

58

9

74

J

90

Z

106

j

122

z

43

+

59

:

75

K

91

[

107

k

123

{

44

,

60

;

76

L

92

\

108

l

124

|

45

-

61

<

77

M

93

]

109

m

125

}

46

.

62

>

78

N

94

^

110

n

126

~

47

/

63

?

79

O

95

_

111

o

127

DEL

Для того чтобы закодировать один символ используют количество информации равное 1 байту, т. е. I = 1 байт = 8 бит. При помощи формулы, которая связывает между собой количество возможных событий К и количество информации I, можно вычислить сколько различных символов можно закодировать (считая, что символы - это возможные события):

К = 2I = 28 = 256,

т. е. для представления текстовой информации можно использовать алфавит мощностью 256 символов.

Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255.

Необходимо помнить, что в настоящее время для кодировки русских букв используют пять различных кодовых таблиц (КОИ - 8, СР1251, СР866, Мас, ISO), причем тексты, закодированные при помощи одной таблицы не будут правильно отображаться в другой кодировке. Наглядно это можно представить в виде фрагмента объединенной таблицы кодировки символов.

Одному и тому же двоичному коду ставится в соответствие различные символы.

Двоичный код

Десятичный код

КОИ8

СР1251

СР866

Мас

ISO

11000010

194

б

В

-

-

Т

Впрочем, в большинстве случаев о перекодировке текстовых документов заботится не пользователь, а специальные программы - конверторы, которые встроены в приложения.

Начиная с 1997 г. последние версии Microsoft Office поддерживают новую кодировку. Она называется Unicode (Юникод). Unicode – это кодировочная таблица, в которой для кодирования каждого символа используется 2 байта, т.е. 16 бит. На основании такой таблицы может быть закодировано N=216=65 536 символов.

Юникод включает практически все современные письменности, в том числе: арабскую, армянскую, бенгальскую, бирманскую, греческую, грузинскую, деванагари, иврит, кириллицу, коптскую, кхмерскую, латинскую, тамильскую, хангыль, хань (Китай, Япония, Корея), чероки, эфиопскую, японскую (катакана, хирагана, кандзи) и другие.

С академической целью добавлены многие исторические письменности, в том числе: древнегреческая, египетские иероглифы, клинопись, письменность майя, этрусский алфавит.

В Юникоде представлен широкий набор математических и музыкальных символов, а также пиктограмм.

Для символов кириллицы в Юникоде выделено два диапазона кодов:

Cyrillic (#0400 — #04FF)

Cyrillic Supplement (#0500 — #052F).

Но внедрение таблицы Unicode в чистом виде сдерживается по той причине, что если код одного символа будет занимать не один байт, а два байта, что для хранения текста понадобится вдвое больше дискового пространства, а для его передачи по каналам связи – вдвое больше времени.

Поэтому сейчас на практике больше распространено представление Юникода UTF-8 (Unicode Transformation Format). UTF-8 обеспечивает наилучшую совместимость с системами, использующими 8-битные символы. Текст, состоящий только из символов с номером меньше 128, при записи в UTF-8 превращается в обычный текст ASCII. Остальные символы Юникода изображаются последовательностями длиной от 2 до 4 байтов. В целом, так как самые распространенные в мире символы – символы латинского алфавита - в UTF-8 по-прежнему занимают 1 байт, такое кодирование экономичнее, чем чистый Юникод.

Чтобы определить числовой код символа можно или воспользоваться кодовой таблицей. Для этого в меню нужно выбрать пункт "Вставка" - "Символ", после чего на экране появляется диалоговая панель Символ. В диалоговом окне появляется таблица символов для выбранного шрифта. Символы в этой таблице располагаются построчно, последовательно слева направо, начиная с символа Пробел.

Кодирование графической информации

В середине 50-х годов для больших ЭВМ, которые применялись в научных и военных исследованиях, впервые в графическом виде было реализовано представление данных. В настоящее время широко используются технологии обработки графической информации с помощью ПК. Графический интерфейс пользователя стал стандартом "де-факто" для ПО разных классов, начиная с операционных систем. Вероятно, это связано со свойством человеческой психики: наглядность способствует более быстрому пониманию. Широкое применение получила специальная область информатики, которая изучает методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов, - компьютерная графика. Без нее трудно представить уже не только компьютерный, но и вполне материальный мир, так как визуализация данных применяется во многих сферах человеческой деятельности. В качестве примера можно привести опытно-конструкторские разработки, медицину (компьютерная томография), научные исследования и др.

Графическую информацию можно представлять в двух формах: аналоговой или дискретной. Живописное полотно, цвет которого изменяется непрерывно - это пример аналогового представления, а изображение, напечатанное при помощи струйного принтера и состоящее из отдельных точек разного цвета - это дискретное представление.

Путем разбиения графического изображения (дискретизации) происходит преобразование графической информации из аналоговой формы в дискретную. При этом производится кодирование - присвоение каждому элементу конкретного значения в форме кода. При кодировании изображения происходит его пространственная дискретизация. Все изображение разбивается на отдельные точки, каждому элементу ставится в соответствие код его цвета.

При этом качество кодирования будет зависеть от следующих параметров: размера точки и количества используемых цветов. Чем меньше размер точки, а, значит, изображение составляется из большего количества точек, тем выше качество кодирования. Чем большее количество цветов используется (т. е. точка изображения может принимать больше возможных состояний), тем больше информации несет каждая точка, а, значит, увеличивается качество кодирования.

Создание и хранение графических объектов возможно в нескольких видах - в виде векторного, фрактального или растрового изображения. Для каждого вида используется свой способ кодирования графической информации.

Растровое изображение.

При помощи увеличительного стекла можно увидеть, что черно-белое графическое изображение, например из газеты, состоит из мельчайших точек, составляющих определенный узор - растр.

Пиксель  Растр

Минимальная единица изображения: пиксель и растр.

Точность передачи рисунка зависит от количества точек и их размера. После разбиения рисунка на точки, начиная с левого угла, двигаясь по строкам слева направо, можно кодировать цвет каждой точки. Далее одну такую точку будем называть пикселем (происхождение этого слова связано с английской аббревиатурой "picture element" - элемент рисунка).

Объем растрового изображения определяется умножением количества пикселей на информационный объем одной точки, который зависит от количества возможных цветов. Качество изображения определяется разрешающей способностью монитора. Чем она выше, то есть больше количество строк растра и точек в строке, тем выше качество изображения.

Если пиксель изображения может быть раскрашен только в один из 2х цветов, допустим, либо в черный (0), либо в белый (1), то для хранения информации о цвете пикселя достаточно 1 бита памяти (log2(2)=1 бит). Соответственно, объем, занимаемый в памяти компьютера всем изображением, будет равен числу пикселей в этом изображении.

Если под хранение информации о цвете пикселя выделить 2 бита, то число цветов, допустимых для раскраски каждого пикселя, увеличится до 4х (N=22=4), а объем файла изображения в битах будет вдвое больше, чем количество составляющих его пикселей.

 

1 бит на пиксель – 2 цвета. 2 бита на пиксель – 4 цвета.

При печати на не цветном принтере обычно допускает 256 градаций серого цвета (от черного (0) до белого (255)) для раскраски каждой точки изображения. Под хранение информации о цвете точки в этом случае отводится 1 байт, т.е. 8 бит (log2(256)=8 бит).

В компьютерной графике чрезвычайно важен цвет. Он выступает как средство усиления зрительного впечатления и повышения информационной насыщенности изображения. Как формируется ощущение цвета человеческим мозгом? Это происходит в результате анализа светового потока, попадающего на сетчатку глаза от отражающих или излучающих объектов. Принято считать, что цветовые рецепторы человека, которые еще называют колбочками, подразделяются на три группы, причем каждая может воспринимать всего один цвет - красный, или зеленый, или синий.

Цветовые модели.

Применяют несколько систем кодирования: HSB, RGB и CMYK. Первая цветовая модель проста и интуитивно понятна, т. е. удобна для человека, вторая наиболее удобна для компьютера, а последняя модель CMYK-для типографий.

Использование этих цветовых моделей связано с тем, что световой поток может формироваться излучениями, представляющими собой комбинацию " чистых" спектральных цветов : красного, зеленого, синего или их производных.

1) Модель HSB характеризуется тремя компонентами: оттенок цвета(Hue), насыщенность цвета (Saturation) и яркость цвета (Brightness). Можно получить большое количество произвольных цветов, регулируя эти компоненты. Эту цветовую модель лучше применять в тех графических редакторах, в которых изображения создают сами, а не обрабатывают уже готовые. Затем созданное свое произведение можно преобразовать в цветовую модель RGB, если ее планируется использовать в качестве экранной иллюстрации, или CMYK, если в качестве печатной.

2) Принцип метода RGB заключается в следующем: известно, что любой цвет можно представить в виде комбинации трех цветов: красного (Red, R), зеленого (Green, G), синего (Blue, B). Другие цвета и их оттенки получаются за счет наличия или отсутствия этих составляющих. По первым буквам основных цветов система и получила свое название - RGB. Данная цветовая модель является аддитивной, то есть любой цвет можно получить сочетание основных цветов в различных пропорциях. При наложении одного компонента основного цвета на другой яркость суммарного излучения увеличивается. Если совместить все три компоненты, то получим ахроматический серый цвет, при увеличении яркости которого происходит приближение к белому цвету.

При 256 градациях тона (каждая точка кодируется 3 байтами) минимальные значения RGB (0,0,0) соответствуют черному цвету, а белому - максимальные с координатами (255, 255, 255). Чем больше значение байта цветовой составляющей, тем этот цвет ярче. Например, темно-синий кодируется тремя байтами ( 0, 0, 128), а ярко-синий (0, 0, 255).

Изменяющиеся в диапазоне от 0 до 255 координаты RGB образуют цветовой куб. Любой цвет расположен внутри этого куба и описывается своим набором координат, показывающем в каких долях смешаны в нем красная, зеленая и синяя составляющие.

Цветовой куб.

Излучающий объект RGB. Отражающий объект CMYK.

3) Принцип метода CMYK. Эта цветовая модель используется при подготовке публикаций к печати. Каждому из основных цветов ставится в соответствие дополнительный цвет (дополняющий основной до белого). Получают дополнительный цвет за счет суммирования пары остальных основных цветов. Любой цвет можно представить или в виде суммы красной, зеленой, синей составляющей или же в виде суммы голубой, пурупурной, желтой составляющей. В основном такой метод принят в полиграфии. Но там еще используют черный цвет (BlacК, так как буква В уже занята синим цветом, то обозначают буквой K). Это связано с тем, что наложение друг на друга дополнительных цветов не дает чистого черного цвета.

Различают несколько режимов представления цветной графики:

а) полноцветный (True Color);

б) High Color;

в) индексный.

При полноцветном режиме для кодирования яркости каждой из составляющих используют по 256 значений (восемь двоичных разрядов), то есть на кодирование цвета одного пикселя (в системе RGB) надо затратить 8*3=24 разряда. Это позволяет однозначно определять 16,5 млн цветов. При кодировании с помощью системы CMYK для представления цветной графики надо иметь 8*4=32 двоичных разряда.

Режим High Color - это кодирование при помощи 16-разрядных двоичных чисел, то есть уменьшается количестко двоичных разрядов при кодировании каждой точки. Но при этом значительно уменьшается диапазон кодируемых цветов.

При индексном кодировании цвета можно передать всего лишь 256 цветовых оттенков. Каждый цвет кодируется при помощи восьми бит данных.

Соответствие между количеством отображаемых цветов (К) и количеством бит для их кодировки (а) находится по формуле: К = 2а.

а

К

Достаточно для…

8

28 = 256

Рисованных изображений типа тех, что видим в мультфильмах, но недостаточно для изображений живой природы

16 (High Color)

216 = 65536

Изображений, которые на картинках в журналах и на фотографиях

24 (True Color)

224 = 16 777 216

Обработки и передачи изображений, не уступающих по качеству наблюдаемым в живой природе

Двоичный код изображения, выводимого на экран, хранится в видеопамяти. Видеопамять - это электронное энергозависимое запоминающее устройство. Размер видеопамяти зависит от разрешающей способности дисплея и количества цветов. Но ее минимальный объем определяется так, чтобы поместился один кадр (одна страница) изображения, т.е. как результат произведения разрешающей способности на размер кода пикселя.

Vmin = M * N * a.

Векторное и фрактальное изображения.

Векторное изображение - это графический объект, состоящий из элементарных отрезков и дуг. Базовым элементом изображения является линия. Как и любой объект, она обладает свойствами: формой (прямая, кривая), толщиной., цветом, начертанием (пунктирная, сплошная). Замкнутые линии имеют свойство заполнения (или другими объектами, или выбранным цветом). Все прочие объекты векторной графики составляются из линий. Так как линия описывается математически как единый объект, то и объем данных для отображения объекта средствами векторной графики значительно меньше, чем в растровой графике. Информация о векторном изображении кодируется как обычная буквенно-цифровая и обрабатывается специальными программами.

К программным средствам создания и обработки векторной графики относятся следующие ГР: CorelDraw, Adobe Illustrator, а также векторизаторы (трассировщики) - специализированные пакеты преобразования растровых изображений в векторные.

Фрактальная графика основывается на математических вычислениях, как и векторная. Но в отличии от векторной ее базовым элементом является сама математическая формула. Это приводит к тому, что в памяти компьютера не хранится никаких объектов и изображение строится только по уравнениям. При помощи этого способа можно строить простейшие регулярные структуры, а также сложные иллюстрации, которые имитируют ландшафты.

Кодирование звуковой информации

Из физики известно, что звук – это колебания воздуха. Если преобразовать звук в электрический сигнал (например, с помощью микрофона), то видно плавно изменяющееся с течением времени напряжение. Для компьютерной обработки такой – аналоговый – сигнал нужно каким-то образом преобразовать в последовательность двоичных чисел.

Делается это, например, так – измеряется напряжение через равные промежутки времени и полученные значения записываются в память компьютера. Этот процесс называется дискретизацией (или оцифровкой), а устройство, выполняющее его – аналого-цифровым преобразователем (АЦП).

Чтобы воспроизвести закодированный таким образом звук, нужно сделать обратное преобразование (для этого служит цифро-аналоговый преобразователь – ЦАП), а затем сгладить получившийся ступенчатый сигнал.

Чем выше частота дискретизации и чем больше разрядов отводится для каждого отсчета, тем точнее будет представлен звук, но при этом увеличивается и размер звукового файла. Поэтому в зависимости от характера звука, требований, предъявляемых к его качеству и объему занимаемой памяти, выбирают некоторые компромиссные значения.

Параметры дискретизации.

Важными параметрами дискретизации являются частота и разрядность.

Разрядность указывает, с какой точностью происходят изменения амплитуды аналогового сигнала. Точность, с которой при оцифровке передается значение амплитуды сигнала в каждый из моментов времени, определяет качество сигнала после цифро-аналогового преобразования. Именно от разрядности зависит достоверность восстановления формы волны.

Для кодирования значения амплитуды используют принцип двоичного кодирования. Звуковой сигнал должен быть представленным в виде последовательности электрических импульсов (двоичных нулей и единиц). Обычно используют 8, 16-битное или 20-битное представление значений амплитуды. При двоичном кодировании непрерывного звукового сигнала его заменяют последовательностью дискретных уровней сигнала.

Частота - количество измерений амплитуды аналогового сигнала в секунду.

В новом формате компакт-дисков Audio DVD за одну секунду сигнал измеряется 96 000 раз, т.е. применяют частоту дискретизации 96 кГц. Для экономии места на жестком диске в мультимедийных приложениях довольно часто применяют меньшие частоты: 11, 22, 32 кГц. Это приводит к уменьшению слышимого диапазона частот, а, значит, происходит сильное искажение того, что слышно.

От частоты дискретизации (количества измерений уровня сигнала в единицу времени) зависит качество кодирования. С увеличением частоты дискретизации увеличивается точность двоичного представления информации. При частоте 8 кГц (количество измерений в секунду 8000) качество оцифрованного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц (количество измерений в секунду 48000) - качеству звучания аудио- CD.

В современных преобразователях принято использовать 20-битное кодирование сигнала, что позволяет получать высококачественную оцифровку звука.

Вспомним формулу К = 2a . Здесь К - количество всевозможных звуков (количество различных уровней сигнала или состояний), которые можно получить при помощи кодирования звука а битами

а

К

Применение

8

256

Недостаточно для достоверного восстановления исходного сигнала, так как будут большие нелинейные искажения. Применяют в основном в мультимедийных приложениях, где не требуется высокое качество звука

16

65536

Используется при записи компакт-дисков, так как нелинейные искажения сводятся к минимуму.

20

1048576

Где требуется высококачественная оцифровка звука.

Описанный способ кодирования звуковой информации достаточно универсален, он позволяет представить любой звук и преобразовывать его самыми разными способами. Но бывают случаи, когда выгодней действовать по-иному.

Издавна используется довольно компактный способ представления музыки – нотная запись. В ней специальными символами указывается, какой высоты звук, на каком инструменте и как сыграть. Фактически, ее можно считать алгоритмом для музыканта, записанным на особом формальном языке. В 1983 ведущие производители компьютеров и музыкальных синтезаторов разработали стандарт, определивший такую систему кодов. Он получил название MIDI.

Конечно, такая система кодирования позволяет записать далеко не всякий звук, она годится только для инструментальной музыки. Но есть у нее и неоспоримые преимущества: чрезвычайно компактная запись, естественность для музыканта (практически любой MIDI-редактор позволяет работать с музыкой в виде обычных нот), легкость замены инструментов, изменения темпа и тональности мелодии.

Есть и другие, чисто компьютерные, форматы записи музыки. Среди них – формат MP3, позволяющий с очень большим качеством и степенью сжатия кодировать музыку, при этом вместо 18–20 музыкальных композиций на стандартном компакт-диске (CDROM) помещается около 200. Одна песня занимает, примерно, 3,5 Mb, что позволяет пользователям сети Интернет легко обмениваться музыкальными композициями.


Задачи по кодированию текста.

1. Два текста содержат одинаковое количество символов. Первый текст записан на русском языке, а второй на языке племени нагури, алфавит которого состоит из 16 символов. Чей текст несет большее количество информации?

Решение.

I = К * а (информационный объем текста равен произведению числа символов на информационный вес одного символа).

Т.к. оба текста имеют одинаковое число символов (К), то разница зависит от информативности одного символа алфавита (а).

2а1 = 32, т.е. а1 = 5 бит,

2а2 = 16, т.е. а2 = 4 бит.

I1 = К * 5 бит, I2 = К * 4 бит.

Значит, текст, записанный на русском языке в 5/4 раза несет больше информации.

2. Объем сообщения, содержащего 2048 символов, составил 1/512 часть Мбайта. Определить мощность алфавита.

Решение.

I = 1/512 * 1024 * 1024 * 8 = 16384 бит. - перевели в биты информационный объем сообщения.

а = I / К = 16384 /1024 =16 бит - приходится на один символ алфавита.

216 = 65536 символов - мощность использованного алфавита.

Именно такой алфавит используется в кодировке Unicode, который должен стать международным стандартом для представления символьной информации в компьютере.

Задачи по кодированию изображения.

1. Сколько бит требуется, чтобы закодировать информацию о 130 оттенках?

Нетрудно подсчитать, что 8 (то есть 1 байт), поскольку при помощи 7 бит можно сохранить номер оттенка о 0 до 127, а 8 бит хранят от 0 до 255. Легко видеть, что такой способ кодирования неоптимален: 130 заметно меньше 255.

2. Известно, что видеопамять компьютера имеет объем 512 Кбайт. Разрешающая способность экрана 640 на 200. Сколько страниц экрана одновременно разместится в видеопамяти при палитре

а) из 8 цветов;

б) 16 цветов;

в) 256 цветов?

3. В режиме True Color на хранение кода каждого пикселя отводится:

16 бит;

16 байт;

24 бита.

4. Минимальной единицей измерения графического изображения на экране монитора является:

mm;

sm;

pixel;

inch.

5. Растровый графический файл содержит черно-белое изображение (без градаций серого) размером 100х100 точек. Какой объем памяти требуется для хранения этого файла?

1000 бит;

10000 бит;

10000 байт.

6. Растровый файл, содержащий черно-белый (без оттенков серого) квадратный рисунок, имеет объем 200 байт. Рассчитайте размер стороны квадрата (в пикселях).

15;

40;

1000.

7. Объем изображения, размером 40х50 пикселей, составляет 2000 байт. Изображение использует:

8 цветов;

256 цветов;

16777216 цветов.

8. Известно, что видеопамять компьютера имеет объем 512 Кбайт. Разрешающая способность экрана 640 на 200 пикселей. Сколько страниц экрана одновременно разместится в видеопамяти при палитре:

из 8 цветов;

16 цветов;

256 цветов?

Задачи по кодированию звука.

1. Подсчитать, сколько места будет занимать одна минута цифрового звука на жестком диске или любом другом цифровом носителе, записанного с частотой

а) 44.1 кГц;

б) 11 кГц;

в) 22 кГц;

г) 32 кГц

и разрядностью 16 бит.

Решение.

а) Если записывают моносигнал с частотой 44.1 кГц, разрядностью 16 бит (2 байта), то каждую минуту аналого-цифровой преобразователь будет выдавать 44100 * 2 * 60 = 529000 байт (примерно 5 Мб) данных об амплитуде аналогового сигнала, который в компьютере записываются на жесткий диск.

Если записывают стереосигнал, то 1058000 байт (около 10 Мб)

б) для частот 11, 22, 32 кГц расчеты производятся аналогично.

2. Какой информационный объем имеет моноаудиофайл, длительность звучания которого 1 секунда, при среднем качестве звука (16 бит, 24 кГц)?

Решение.

16 бит * 24000 = 384000 бит = 48000 байт = 47 кБайт

3. Рассчитайте объем стереоаудиофайла длительностью 20 секунд при 20-битном кодировании и частоте дискретизации 44.1 кГц.

Решение.

20 бит * 20 * 44100 * 2 = 35280000 бит = 4410000 байт = 4.41 Мб




1.  Введение Бетсайзинг означает определение размера ставки
2. Модуль 2 Заболевания желчных протоков и поджелудочной железы Методическое пособие для подготовки к эк
3. 7 8
4. Керування точністю обробки
5. Отчет по лабораторной работе 1
6. СМИ в чрезвычайных ситуациях
7. ДоллиКатя Б ВВяземский Даши Д
8. Изучение и разработка очистки стоков от ионов тяжелых металлов
9. правовые отношения ~ массовые и наиболее значимые для общества отношения нацеленные на осуществление власт
10. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата архітектури Київ ~ Дисертаці
11. 4 1 час ОБМЕН ДАННЫМИ МЕЖДУ ПРИЛОЖЕНИЯМИ WINDOWS ЦЕЛЬ РАБОТЫ Изучить принцип обмена данными между п
12. З КУРСУ Моделювання технологічних процесів на ПЕОМ
13. Взаимосвязь эффективной адаптации с уровнем конфликтности в студенческой группе
14. Стресс и дистресс. Профилактика дистресса у педагогов
15. Требования безопасности при работе на высоте
16. точке первой доли кисть руки была на одном уровне с локтем ; вторая доля имеет направление в сторону от
17. Философия Бернардино Телезио и Томазо Кампанеллы
18. на тему- Загальна характеристика трудового договору Виконав- студент групи Перевірив.html
19. Программа курса 'Основы теории вероятностей'
20. Финансы и кредит Тверь 2009 Рецензент- Кандидат экономических наук профессо