Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
РЕФЕРАТ
на тему:
ІНДЕКСИ
В СТАТИСТИЦІ
1. Класифікація індексів.
Індекс (index) у статистиці узагальнюючий відносний показник, який характеризує співвідношення в часі чи просторі соціально-економічних явищ і процесів.
Індекси використовуються для порівняльної характеристики сукупності в часі, для порівняння фактичного випуску з планом, для порівняння рівнів виробництва продукції, цін, продуктивності праці в різних регіонах, на різних підприємствах, для різних товарів.
Індекси можна класифікувати за різними ознаками:
Для найбільш уживаних в економічному аналізі належать такі індекси:
Індивідуальні індекси позначають буквою і та супроводжують підрядковим значком індексую чого показника, тобто показника, співвідношення рівнів якого характеризує індекс. Індекс цін позначають символом ір, індекс фізичного обсягу іg тощо. Показники за період, з яким проводиться порівняння /базисний період/, мають підрядкову цифру “0”, а показники за період, що порівнюється /звітний чи поточний/, - “1”.
Розрахунок індивідуальних змінних і базисних індексів аналогічний відповідним відносним величинам динаміки, де ряд коефіцієнтів росту (зниження) з постійною базою порівняння називають базисними показниками, а ряд коефіцієнтів росту (зниження) з перемінною базою порівняння змінними. У другому випадку ряд коефіцієнтів росту визначається відношенням до попереднього періоду. Цим розрахункам відповідають і такі правила: 1) добуток змінних індивідуальних коефіцієнтів (індексів) називають базисним індексом; 2) відношення двох базисних індивідуальних індексів дає змінний індивідуальний індекс.
Наведені правила можуть стосуватися і загальних індексів, якщо вони розраховані з постійними вагами.
Загальний або агрегатний індекс характеризує відношення рівнів явища, яке складається з декількох видів одиниць (однорідних або неоднорідних).
Назва |
Розрахункова формула |
1. Індекс ціни |
ip = p1/p0 |
2. Індекс кількості продажу (виробництва) продукції |
iq = q1/q0 |
3. Індекс товарообігу |
IQ = Q1/Q2 |
4. Індекс собівартості продукції |
iz = z1/z0 |
5. Індекс продуктивності праці |
iv = v1/v0 iw = w1/w0 it = t1/t0 |
2. Основні формули розрахунків
Формули цих індексів мають такий вигляд:
фізичного обсягу
цін
або
питомих втрат сировини
собівартості
продуктивності праці
де q1 і q0, T1 і T0 кількісна ознака відповідно у звітному і базисному періодах (q фізичний обсяг; T кількість робітників); p1 і p0; m1 і m0; z1 і z0; v1 і v0 якісна ознака (p ціна; m питомі витрати сировини; z собівартість одиниці продукції; v продуктивність праці відповідно у звітному і базисному періодах).
Якщо замість кількісної ознаки використовують дані про її структуру, то, наприклад, при розрахунку індексу цін слід застосовувати таку формулу:
де S структура товарної маси у звітному періоді.
Таким же чином будують територіальні індекси. Їх застосовують для порівняння одноіменних ознак різних територій або обєктів. Індивідуальні територіальні індекси аналогічні величинам порівняння в територіальному відношенні. При побудові загальних територіальних індексів виникає необхідність у застосуванні статистичних ваг. При цьому формули статистичних індексів мають вигляд:
а) для території а
б) для території б
а) для території а
б) для території б -
Щоб визначити абсолютну величину збільшення чи зменшення за рахунок зміни будь-якої величини необхідно від чисельника загальної формули відняти знаменник.
Наприклад,
Загальне збільшення (зменшення) обсягу товарообігу:
.
3. Середні індекси
Побудова середніх арифметичних і гармонічних індексів ґрунтується на використанні індивідуальних індексів кількісних і якісних показників.
Середній арифметичний індекс фізичного обсягу вираховують:
Середній гармонічний індекс цін вираховується так:
4. Індекси середніх величин і структурних зрушень
Для характеристики динаміки двох середніх рівнів однорідної сукупності визначають індекс середньої величини (змінного складу). Він характеризує зміну середньої величини в результаті дії двох чинників з кількісного і якісного.
Індекс структурних зрушень показує як змінилася структура не враховуючи зміну показників:
Індекс постійного складу показує як змінився показник, не враховуючи зміну структури:
5. Взаємозвязок
Існує взаємозвязок між індивідуальними індексами, який полягає в тому, що:
Взаємозвязок між загальними індексами:
1) Добуток загальних індексів цін і фізичного обсягу дорівнює індексу вартості:
2) Взаємозвязок між індексами постійного перемінного складу і структурних зрушень полягає в тому, що добуток індексів з постійного складу і структурних зрушень дорівнює індексу змінного складу.