Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

РЕФЕРАТ НА ТЕМУ- ИСТОРИЯ МАТЕМАТИКИ Выполняла студентка группы 31В Черноглазова Алина Всев.html

Работа добавлена на сайт samzan.net:


ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ

ПЕДАГОГИЧЕСКИЙ КОЛЛЕДЖ №13 имени С.Я. МАРШАКА

РЕФЕРАТ НА ТЕМУ:

ИСТОРИЯ МАТЕМАТИКИ

Выполняла студентка группы 31-В

Черноглазова Алина Всеволодовна

Москва 2013

ГЛАВА 1. Зарождение математики

 Счёт предметов на самых ранних ступенях развития культуры привёл к созданию простейших понятий арифметики натуральных чисел. Только на основе разработанной системы устного счисления возникают письменные системы счисления и постепенно вырабатываются приёмы выполнения над натуральными числами четырёх арифметических действий (из которых только деление ещё долго представляло большие трудности). Потребности измерения (количества зерна, длины дороги и т. п.) приводят к появлению названий и обозначений простейших дробных чисел и к разработке приёмов выполнения арифметических действий над дробями. Таким образом накапливается материал, складывающийся постепенно в древнейшую математическую науку — арифметику. Измерение площадей и объёмов, потребности строительной техники, а несколько позднее — астрономии, вызывают развитие начатков геометрии. Эти процессы шли у многих народов в значительной мере независимо и параллельно. Особенное значение для дальнейшего развития науки имело накопление арифметических и геометрических знаний в Египте и Вавилонии. В Вавилонии на основе развитой техники арифметических вычислений появились также начатки алгебры, а в связи с запросами астрономии — начаткитригонометрии.

Сохранившиеся математические тексты Древнего Египта (1-я половина 2-го тысячелетия до н. э.) состоят по преимуществу из примеров на решение отдельных задач и, в лучшем случае, рецептов для их решения, которые иногда удаётся понять, лишь анализируя числовые примеры, данные в текстах. Следует говорить именно о рецептах для решения отдельных типов задач, так как математической теории в смысле доказательств общих теорем, видимо, вовсе не существовало. Об этом свидетельствует, например, то, что точные решения употреблялись без всякого отличия от приближённых. Тем не менее, самый запас установленных математических фактов был, в соответствии с высокой строительной техникой, сложностью земельных отношений, потребностью в точном календаре и т. п., довольно велик (см. Папирусы математические).

Математических текстов, позволяющих судить о М. в Вавилонии, несравненно больше, чем египетских. Вавилонские клинописные математические тексты охватывают период от 2-го тысячелетия до н. э. до возникновения и развития греческой М. Вавилония этого времени получила от более раннего шумерского периода развитую смешанную десятично-шестидесятиричную систему счисления, заключавшую в себе уже позиционный принцип (одни и те же знаки обозначают одно и то же число единиц разных шестидесятиричных разрядов). Деление при помощи таблиц обратных чисел сводилось к умножению. Кроме таблиц обратных чисел, имелись таблицы произведений, квадратов, квадратных и кубических корней. Из достижений вавилонской М. в области геометрии, выходящих за пределы познаний египтян, следует отметить разработанное измерение углов и некоторые начатки тригонометрии, связанные, очевидно, с развитием астрономии. Вавилонянам была уже известна теорема Пифагора.  [Ист.1 ] http://slovari.yandex.ru/~книги/БСЭ/Математика

ГЛАВА 2. Математика древней Греции

Математика как наука родилась в Греции. В странах-современниках Эллады математика использовалась либо для обыденных нужд (подсчёты, измерения), либо, наоборот, длямагических ритуалов, имевших целью выяснить волю богов (астрологиянумерология и т. п.). Греки подошли к делу с другой стороны: они выдвинули тезис «Числа правят миром». Или, как сформулировал эту же мысль Галилей два тысячелетия спустя: «книга природы написана на языке математики»].

Греки проверили справедливость этого тезиса в тех областях, где сумели: астрономияоптикамузыкагеометрия, позже — механика. Всюду были отмечены впечатляющие успехи:математическая модель обладала неоспоримой предсказательной силой. Одновременно греки создали методологию математики и завершили превращение её из свода полуэвристических алгоритмов в целостную систему знаний. Основой этой системы впервые стал дедуктивный метод, показывающий, как из известных истин выводить новые, причём логика вывода гарантирует истинность новых результатов. Дедуктивный метод также позволяет выявить неочевидные связи между понятиями, научными фактами и областями математики.

Бо́льшая часть античных сочинений по математике не дошла до наших дней и известна только по упоминаниям позднейших авторов и комментаторов, в первую очередь Паппа Александрийского (III век), Прокла (V век), Симпликия (VI век) и др. Среди сохранившихся трудов в первую очередь следует назвать «Начала» Евклида и отдельные книги Аристотеля,АрхимедаАполлония и Диофанта.

Вплоть до VI века до н. э. греческая математика ничем не выделялась. Были, как обычно, освоены счёт и измерение. Греческая нумерация (запись чисел), как позже римская, была аддитивной, то есть числовые значения цифр складывались. Первый её вариант (аттическая, или геродианова) содержали буквенные значки для 1, 5, 10, 50, 100 и 1000. Соответственно была устроена и счётная доска (абак) с камешками. Кстати, термин калькуляция (вычисление) происходит от calculus  — камешек. Особый дырявый камешек обозначал нуль.

Позднее (начиная с V века до н. э.) вместо аттической нумерации была принята алфавитная — первые 9 букв греческого алфавита обозначали цифры от 1 до 9, следующие 9 букв — десятки, остальные — сотни. Чтобы не спутать числа и буквы, над числами рисовали чёрточку. Числа, большие 1000, записывали позиционно, помечая дополнительные разряды специальным штрихом (внизу слева). Специальные пометки позволяли изображать и числа, большие 10000.

В VI веке до н. э. начинается «греческое чудо»: появляются сразу две научные школы — ионийцы (Фалес МилетскийАнаксименАнаксимандр) и пифагорейцы. О достижениях ранних греческих математиков мы знаем в основном по упоминаниям позднейших авторов, преимущественно комментаторов ЕвклидаПлатона и Аристотеля.

Фалес, богатый купец, хорошо изучил вавилонскую математику и астрономию — вероятно, во время торговых поездок. Ионийцы, по сообщению Евдема Родосского, дали первые доказательства нескольких простых геометрических теорем — например, о том, что вертикальные углы равны[4]. Однако главная роль в деле создания античной математики принадлежит пифагорейцам.

Пифагор, основатель школы — личность легендарная, и достоверность дошедших до нас сведений о нём проверить невозможно. Видимо, он, как и Фалес, много путешествовал и тоже учился у египетских и вавилонских мудрецов. Вернувшись около 530 г. до н. э. в Великую Грецию (район южной Италии), он в городе Кротон основал нечто вроде тайного духовного ордена. Именно он выдвинул тезис «Числа правят миром», и с исключительной энергией занимался его обоснованием. В начале V в. до н. э., после неудачного политического выступления, пифагорейцы были изгнаны из Южной Италии, и союз прекратил свое существование, однако популярность учения от рассеяния только возросла. Пифагорейские школы появились в Афинах, на островах и в греческих колониях, а их математические знания, строго оберегаемые от посторонних, сделались общим достоянием.

Рафаэль Санти. Пифагор (деталь Афинской школы)

Многие достижения, приписываемые Пифагору, вероятно, на самом деле являются заслугой его учеников. Пифагорейцызанимались астрономиейгеометриейарифметикой (теорией чисел), создали теорию музыки. Пифагор первый из европейцев понял значение аксиоматического метода, чётко выделяя базовые предположения (аксиомы, постулаты) и дедуктивно выводимые из них теоремы.

Геометрия пифагорейцев в основном ограничивалась планиметрией (судя по дошедшим до нас позднейшим трудам, очень полно изложенной) и завершалась доказательством «теоремы Пифагора». Хотя изучались и правильные многогранники.

Была построена математическая теория музыки. Зависимость музыкальной гармонии от отношений целых чисел (длин струн) была сильным аргументом пифагорейцев в пользу исконной математической гармонии мира, спустя 2000 лет воспетойКеплером. Они были уверены, что «элементы чисел являются элементами всех вещей… и что весь мир в целом является гармонией и числом»[5]. В основе всех законов природы, полагали пифагорейцы, лежит арифметика, и с её помощью можно проникнуть во все тайны мира. В отличие от геометрии, арифметика у них строилась не на аксиоматической базе, свойства натуральных чисел считались самоочевидными, однако доказательства теорем и здесь проводили неуклонно. Понятия нуля иотрицательных чисел ещё не возникли.

Пифагорейцы далеко продвинулись в теории делимости, но чрезмерно увлеклись «треугольными», «квадратными», «совершенными» и т. п. числами, которым, судя по всему, придавали мистическое значение. Видимо, правила построения «пифагоровых троек» были открыты уже тогда; исчерпывающие формулы для них приводятся у Диофанта. Теория наибольших общих делителей и наименьших общих кратных тоже, видимо, пифагорейского происхождения. Они построили общую теорию дробей (понимаемых как отношения (пропорции), так как единица считалась неделимой), научились выполнять с дробями сравнение (приведением к общему знаменателю) и все 4 арифметические операции. Пифагорейцы знали, задолго до «Начал»Евклида, деление целых чисел с остатком и «алгоритм Евклида» для практического нахождения наибольшего общего делителяНепрерывные дроби как самостоятельный объект выделили только в Новое время, хотя их неполные частные естественным путём получаются в алгоритме Евклида.

Первой трещиной в пифагорейской модели мира стало ими же полученное доказательство иррациональности , сформулированное геометрически как несоизмеримость диагонали квадрата с его стороной (V век до н. э.). Невозможность выразить длину отрезка числом ставила под сомнение главный принцип пифагорейства. Даже Аристотель, не разделявший их взгляды, выражал своё изумление по поводу того, что есть вещи, которые «нельзя измерить самою малою мерою».

Положение попытался спасти талантливый пифагореец Теэтет. Он (и позже Евдокс) предложили новое понимание числа, которое теперь формулировались на геометрическом языке, и проблем соизмеримости не возникало. Теэтет разработал также полную теорию делимости и классификацию иррациональностей. Повидимому, ему также были известны понятиепростого числа и основная теорема арифметики.

Впоследствии, уже в Новое время, выяснилось, что построение числовой алгебры на основе геометрии было стратегической ошибкой пифагорейцев. Например, с точки зрения геометрии выражения  и даже  не имели геометрического истолкования, и поэтому не имели смысла; то же относится к отрицательным числам. Позднее Декарт поступил наоборот, построив геометрию на основе алгебры, и добился громадного прогресса.

Нумерологическая мистика пифагорейцев нередко приводила к произвольным и спекулятивным выводам. Например, они были уверены в существовании невидимой Антиземли, так как без неё число небесных сфер (нижнее небо, Солнце, Луна и 6 планет) не составляет совершенного числа 10. В целом, несмотря на обилие мистики и эксцентричных предрассудков, заслуги пифагорейцев в развитии и систематизации античных математических знаний неоценимы.

В V веке до н. э. появились новые вызовы оптимизму пифагорейцев.

Первый из них — три классические задачи древности: удвоение кубатрисекция угла и квадратура круга. Греки строго придерживались требования: все геометрические построения должны выполняться с помощью циркуля и линейки, то есть с помощью совершенных линий — прямых и окружностей. Однако для перечисленных задач найти решение каноническими методами не удавалось. Алгебраически это означало, что не всякое число можно получить с помощью 4 арифметических операций и извлечения квадратного корня.

Квадратурой круга безуспешно занимался выдающийся геометр-пифагореец, автор доевклидовых «Начал», первого свода геометрических знаний, Гиппократ Хиосский.

Первые две задачи сводятся к кубическим уравнениям. Архимед позже дал общее решение кубических уравнений с помощью конических сечений. Однако многие комментаторы продолжали считать подобные методы неприемлемыми. Гиппий из Элиды (V век до н. э.) показал, что для трисекции угла полезна квадратриса (первая трансцендентная кривая в истории математики); она же, кстати, решает и задачу квадратуры круга (Динострат, IV век до н. э.).

Помимо перечисленных, греки активно исследовали задачу деления круга: какие правильные многоугольники можно построить циркулем и линейкой. Без труда удавалось разделить окружность на 3, 4, 5, 15 частей, а также удвоить перечисленные значения. Но семиугольник никому не поддавался. Как оказалось, здесь также получается кубическое уравнение. Полную теорию опубликовал только Гаусс в XIX веке.

Зенон Элейский

Второй удар по пифагореизму нанёс Зенон Элейский, предложив ещё одну тему для многовековых размышлений математиков. Он высказал более 40 парадоксов (апорий), из которых наиболее знамениты четыре. Вопреки многократным попыткам их опровергнуть и даже осмеять, они, тем не менее, до сих пор служат предметом серьёзного анализа. Здесь затронуты самые деликатные вопросы оснований математики — конечность и бесконечностьнепрерывность и дискретность. Математика тогда считалась средством познания реальности, и суть споров можно было выразить как неадекватность непрерывной, бесконечно делимой математической модели физически дискретной материи[8].

В конце V века до н. э. жил ещё один выдающийся мыслитель — Демокрит. Он знаменит не только созданием концепции атомов. Архимедписал, что Демокрит нашёл объём пирамиды и конуса, но доказательств своих формул не дал. Вероятно, Архимед имел в виду доказательствометодом исчерпывания, которого тогда ещё не существовало.

Уже к началу IV века до н. э. греческая математика далеко опередила всех своих учителей, и её бурное развитие продолжалось. В 389 году до н. э. Платон основывает в Афинах свою школу — знаменитуюАкадемию. Математиков, присоединившихся к Академии, можно разделить на две группы: на тех, кто получил своё математическое образование вне Академии, и на учеников Академии. К числу первых принадлежали Теэтет Афинский, Архит Тарентский и позднее Евдокс Книдский; к числу вторых — братья Менехм и Динострат.

Сам Платон конкретных математических исследований не вёл, но опубликовал глубокие рассуждения по философии и методологии математики. А ученик Платона, Аристотель, оставил бесценные для нас записки по истории математики.

Евдокс Книдский первый создал геоцентрическую модель движения светил с 27 сферами. Позже эта конструкция была развита Аполлонием, Гиппархом и Птолемеем, которые увеличили число сфер до 34 и ввели эпициклы. Ему же принадлежат два выдающихся открытия: общая теория отношений (геометрическая модель вещественных чисел) и античный анализ — метод исчерпывания.

После завоеваний Александра Македонского научным центром древнего мира становится Александрия Египетская. Птолемей I основал в ней Мусейон (Дом Муз) и пригласил туда виднейших учёных. Это была первая в грекоязычном мире государственная академия, с богатейшей библиотекой (ядром которой послужила библиотека Аристотеля), которая к I веку до н. э. насчитывала 70000 томов.

Учёные Александрии объединили вычислительную мощь и древние знания вавилонских и египетских математиков с научными моделями эллинов. Значительно продвинулись плоская и сферическая тригонометрия, статика и гидростатика, оптика, музыка и др. Эратосфен уточнил длинумеридиана и изобрёл своё знаменитое «решето». В истории математики известны три великих геометра древности, и прежде всего — Евклид с его «Началами». Тринадцать книг Начал — основа античной математики, итог её 300-летнего развития и база для дальнейших исследований. Влияние и авторитет этой книги были огромны в течение двух тысяч лет.

Фундамент математики, описанный Евклидом, расширил другой великий учёный — Архимед, один из немногих математиков античности, которые одинаково охотно занимались и теоретической, и прикладной наукой. Он, в частности, развив метод исчерпывания, сумел вычислить площади и объёмы многочисленных фигур и тел, ранее не поддававшихся усилиям математиков.  [ист.2]http://ru.wikipedia.org/wiki/Математика_в_Древней_Греции

ГЛАВА 3. Математика средних веков

Начиная с 3 века н.э., все крупные государства Античного мира вошли в эпоху кризисов. Многие из них - как Римская империя в Средиземноморье и китайская империя Хань на восточном краю Евразии - распались на мелкие княжества и вскоре стали добычей соседних варваров. Затем эпоха распада империй сменилась эпохой переселения народов. На просторах Евразии разноплеменные варвары вновь и вновь делили наследство древних государств. Большая часть античной культуры погибла в этом пожаре: города были разграблены и покинуты, библиотеки сгорели, университеты закрылись, а ученые вымерли, не оставив учеников. В новом мире невежества островки науки и просвещения сохранялись только в монастырях разных религий: христианских на западе, буддийских или индуистских на востоке и юге Евразии. Позднее (с 8 века н.э.) в новой империи - Арабском Халифате - возникли исламские монастыри.

Большинство богословов Средневековья не одобряло античную мудрость; об ученых-исследователях говорили, что они "ум свой ставят в Бога место". Но в монастырях сохранилось уважение к древним рукописям: монахи переписывали их дословно, не вникая в смысл того, что написано. Таким путем многие достижения ученых эллинов или римлян сохранились в течение веков и достигли новых мыслителей, пройдя сквозь множество невежд.

Любознательные представители каждого нового народа, включаясь в мировую культуру, были вынуждены осваивать древнюю мудрость самостоятельно - без помощи старших коллег. Эта работа занимала века и поглощала все силы новых ученых. Поэтому в большинстве стран нового мира дело не дошло до оригинальных открытий вроде тех, которые сделали эллины. В средневковом мире нехватало городов-республик, подобных полисам Эллады; пока они не появились, наука развивалась очень медленно.

Из всех ойкумен Земли Индия оказалась наименее затронута переселением народов. Не удивительно, что именно здесь в 6 веке н.э. расцвела самобытная математическая школа. Познакомившись с достижениями эллинов, индийцы были удивлены: какая совершенная у них геометрия, и какая неудобная арифметика! Хуже всего греческая система записи чисел: с помощью букв, без всякой связи с привычным счетом на пальцах. Надо связать обозначения чисел с процедурой счета! Индийские ученые сделали это, создав позиционную десятичную систему счисления.

Первый шаг к этой цели сделал около 500 года молодой математик Ариабхата из города Кусумапура. Он начал изображать каждый разряд в десятичной записи целого числа парой букв. Согласная обозначала цифру, а гласная - номер разряда, так что символ ВА означал В*10.. Эти пары букв записывались по возрастанию степеней числа 10. Но различить такое слово-число в обычном тексте было не просто; поэтому вскоре начертания букв-цифр были изменены, и появились первые десятичные цифры. Нуля среди них еще не было - но вскоре пришлось его ввести, для удобства чтения десятичной записи. Через сто лет после Ариабхаты его соотечественник Брахмагупта уже свободно оперировал с отрицательными числами и нулем и решал целочисленные уравнения с таким же искусством, как Диофант.

Оставалось разнести эту полезную новинку по всему свету. Тут важнейшую роль сыграл современник Брахмагупты - пророк Мухаммед из Мекки. Он сам и многие его сподвижники были в равной мере воинами и купцами. Поэтому как только арабы покорили Иран и вторглись в Индию (в 660-е годы), они сразу оценили индийскую систему счета и переняли ее. Вскоре позиционная система счисления распространилась во всем арабском Халифате - от Индии до Андалузии (будущей Испании), от Египта до Поволжья. С тех пор во всем мире (кроме Индии) десятичные цифры называют "арабскими". Но, конечно, скорость усвоения этой новинки разными народами зависела от их экономического развития.

В конце 8 века мировое научное первенство перешло из Индийского мира в Исламский мир, центром которого стал Багдад, расположенный на Тигре - вблизи развалин Вавилона. Основатель Багдада - халиф Мансур (707-775) - хотел, чтобы его столица превзошла великолепием и ученостью Александрию и Константинополь. Но ученых арабов в ту пору было еще мало; ведущую роль в новом "Доме Мудрости" в Багдаде играли сирийцы и персы, согдийцы и греки, принявшие ислам.

Наибольших успехов в математике достиг согдиец Мухаммед ибн Муса аль-Хорезми (то есть, родом из Хорезма - с берегов Сыр-Дарьи). Он работал в первой половине 9 века и был любимцем ученейшего из халифов - Маамуна (сына знаменитого Гаруна ар-Рашида). Главная книга Хорезми названа скромно: "Учение о переносах и сокращениях", то есть техника решения алгебраических уравнений. По арабски это звучит "Ильм аль-джебр ва"ль-мукабала"; отсюда произошло наше слово "алгебра". Другое известное слово - "алгоритм", то есть четкое правило решения задач определенного типа - произошло от прозвания "аль-Хорезми". Третий известный термин, введенный в математику знаменитым согдийцем - это "синус", хотя в этом деле не обошлось без курьеза.

Геометрический смысл синуса - это половина длины хорды, стягивающей данную дугу. Хорезми назвал эту вещь красиво и точно: "тетива лука"; по арабски это звучит "джейяб". Но в арабском алфавите есть только согласные буквы; гласные изображаются "огласовками" - черточками, вроде наших кавычек и запятых. Мало сведущий человек, читая арабский текст, нередко путает огласовки; так случилось с переводчиком книги Хорезми на латынь. Вместо "джейяб" - "тетива" - он прочел "джиба" - "бухта"; по латыни это пишется "sinus". С тех пор европейские математики используют это слово, не заботясь о его изначальном смысле.

В последующие века ученые Ближнего и Среднего Востока продолжали развивать наследие Эллады, стараясь объединить его с новым алгебраическим учением. При этом индийские математики больше уклонялись в арифметику, следуя по стопам Диофанта. Напротив, арабские ученые следовали по пути Архимеда. Они пытались разобраться в новом мире кубических уравнений: классифицировали их, выделяя те, которые решаются так же просто, как квадратные уравнения.

Наивысших успехов в этой области достиг ученый поэт Омар Хайям из Нишапура (1048-1131). Стихи он писал по персидски, научные трактаты по арабски, а в служебных делах пользовался тюркским языком. В 11 веке тюрки-сельджуки захватили большую часть Ирана и византийсих владений в Малой Азии. На этих землях новые народы осваивали и развивали наследие всех предшественников - от вавилонян до арабов.

Потерпев неудачу в прямом поиске корней произвольного кубического уравнения, Омар Хайям открыл несколько способов приближенного вычисления этих корней. Это была блестящая идея: добраться до неведомых чисел, используя хорошо знакомые кривые! Как только (в 17 веке) Рене Декарт добавил к ней вторую идею - описать любую кривую с помощью чисел - родилась аналитическая геометрия, в которой решение алгебраических уравнений слито воедино с теорией чисел и с наглядной геометрией. Предчувствуя эту связь, Омар Хайям поставил много интересных вычислительных опытов. Он нашел приближенные способы деления окружности на 7 или 9 равных частей; составил подробные таблицы синусов и с большой точностью вычислил Пи.

Хайям догадался, что это число и ррациональное, и даже не квадратичное - но доказать эту гипотезу не смог. Не удались Хайяму и попытки доказать пятый постулат Евклида о параллельных прямых. Не удивительно, что на отдыхе от таких трудов Омар Хайям писал довольно грустные стихи...

Тем временем на дальнем востоке Евразии другие математики и астрономы пытались постичь те же тайны природы на своем научном языке. В Элладе этот язык состоял, в основном, из чертежей - а в Китае из иероглифов. В сущности, иероглиф - это тоже чертеж особого рода, составленный из простых значков: каждый значок изображает одно простое понятие. Например, знак Шу означает "число", а знак Сюэ - "учение". Однако их сочетание - Шу Сюэ - обозначает не только учение о числах (то есть, арифметику), но и всю математическую науку. Как в таком случае назвать геометрию" Очень просто: Цзи Хэ Сюэ - "учение о том, сколько чего". То есть, геометрию китайцы воспринимали как науку, рассчитывающую свойства фигур - и только!

С этой точкой зрения наверняка согласился бы ученый из древнего Вавилона; но Пифагор или Платон ни за что не признали бы правоту китайцев. Если геометры займутся одними только расчетами - кто будет выяснять сущность природных тел или научных понятий" Ученый китаец отвечал на такой вопрос кратко и просто: ничего не нужно выяснять! Вся суть природы и науки уже выражена в иероглифах. Небо даровало их нашим предкам 20 веков назад - и ничего тут ни убавить, ни прибавить. Можно комбинировать известные иероглифы в новом порядке; но изменять их смысл нельзя - это противоречит законам природы и воле Неба!

Сравнивая этот консерватизм китайцев с новаторством эллинов или индийцев, невольно изумляешься: как многое зависит от удачной системы обозначений! Переход от смысловых иероглифов к звуковому алфавиту избавил Элладу от груза мертвых традиций Египта или Двуречья. Эллинам пришлось многому учиться заново - зато они смогли усвоить древнюю мудрость без множества сопутствующих заблуждений. Китайцам не выпало это трудное счастье. Их иероглифическая культура устояла даже под натиском переселения варварских народов - после крушения империи Хань. В итоге мудрецы средневекового Китая остались в плену древнейшей натурфилософии из всех, сохранившихся на Земле. Поэтому заочное соперничество между математиками Запада и Китая напоминает состязание двух бегунов - одного в легком платье, а другого - в кольчуге. Исход соревнования ясен: в античную эпоху эллины вырвались далеко вперед. В Средние века разрыв между китайцами и арабами заметно сократился, но в Новое время западные европейцы решительно опередили своих ближневосточных (и тем более - дальневосточных) коллег.

В течение всего Средневековья медленно развивавшаяся наука Исламского мира служила как бы "холодильником открытий". Здесь высшие достижения Эллады дожидались дерзких и умелых пользователей и продолжателей. Напротив, застывшая ученость имперского Китая стала в ту пору "холодильником интеллигенции". Только в 18 веке, когда новые дерзкие европейцы прорвались в Китай, они вызвали там пробуждение великих природных сил. К 20 веку китайские ученые вновь вошли в число передовых умов человечества: это выразилось и в нобелевских премиях, и в математических открытиях.

Вернемся в Европу, где после распада Римской империи наступили "Темные века". Нельзя сказать, что в эту пору исчезла государственность или прекратилась торговля. Напротив, они процветали в Восточной Римской державе, созданной новыми грекоязычными христианами - ромеями. Их часто называют и византийцыми - в честь древнего города Византия на Босфоре, который был тогда переименован в Константинополь и прозван "Вторым Римом". Умением плавать по морю и строить города ромеи не уступали своим предкам-эллинам; в государственных делах они подражали своим предшественникам - римлянам.

Но любви к натурфилософии или к точным наукам ромеи от эллинов не унаследовали; для них главным видом интеллектуального спорта сделалось богословие. Монахи и императоры косо смотрели на "языческую премудрость" эллинов. Не случайно самый прославленный император Византии - Юстиниан 1 (483-565) начал свое правление с того, что закрыл в 529 году Академию в Афинах. Прекратилась научная работа и в Александрийском Музее. В последующие века христианские и исламские богословы яростно спорили между собой, но сходились во мнении, что "из увлекшихся математикой лишь немногие не сделались вероотступниками и не сбросили с голов своих узду благочестия". Казалось, что золотой век греческой науки никогда не повторится в Европе.

Однако всему приходит конец - даже темным векам. Через 6 столетий после победы христианства - в 10 веке - в Западной Европе началась очередная культурная революция. Как прежде в Элладе, она охватила молодые народы: французов и немцев, бургундцев и чехов, которым от роду было не более ста лет. Вновь опорой культурного взлета стал новый образ жизни - но в этот раз не городской, а феодальный. Вместо былых республик-полисов в Европе размножались республики-монастыри и рыцарские замки. В тех и других господствовали строгий устав и трудовая дисциплина; но во всех вопросах, не охваченных Священным Писанием, допускалась немалая свобода мысли. "Мы наш, мы новый мир построим" - таков стал настрой мысли диковатых западных европейцев, не стесненных ни королевской, ни папской властью.

Рыцари стремились в крестовые походы, чтобы помериться силой с язычниками или мусульманами и разбогатеть. Многие монахи стремились крестить иноверцев, превратить их в свое подобие. Но другие мечтали о богатствах иного рода - тех, которые питают любознательный ум. Вот, лежит за Пиренеями загадочный Исламский мир, обильный ремеслами и ученостью. Как хорошо, что Карл Великий отвоевал у мусульман пограничную Барселону! Теперь в этом городе рядом с католиками живет немало ученых мусульман и иудеев. Любознательный христианин может многому у них научиться.

Так рассуждал французский монах Герберт из Орильяка - первый профессиональный ученый католической Европы. В 970-е годы он поселился в Барселоне, выучил арабский язык и начал беседовать с учеными иноверцами обо всем на свете. Астрономия и арифметика, изготовление бумаги и музыкальных инструментов - во всем этом жители Андалузии превосходили лучших мастеров Франции или Италии, и все это Герберт старался перенять. Через пять лет он сделал очередной шаг: направился в центр Андалузии - Кордову - и три года учился у местных мудрецов. Ему не раз предлагали принять ислам и стать цивилизованным человеком. Но Герберта интересовало только второе из этих предложений. Соединить арабскую мудрость, ученость древних греков и римлян с христианским богословием; сделать этот сплав достоянием всех католиков - такую цель поставил перед собою отважный и упорный Герберт из Орильяка.

Вернувшись во Францию, Герберт устроил в городе Реймсе училище по своему вкусу. В нем юношей обучали латыни и греческому, а желающих - также арабскому и древнееврейскому языкам. Кроме этого, преподавались астрономия и музыка, арифметика на основе арабских цифр. Все необходимые приборы строил сам Герберт с помощью учеников. А какую библиотеку он привез из-за Пиренеев! В ней были Платон и Аристотель, Евклид и Птолемей, множество арабских рукописей...

Многие европейские правители стремились отдать своих сыновей в учение к Герберту. В 996 году один из его питомцев сделался королем Франции Робертом 2; тогда Герберт был назначен епископом Реймса, и этот город на века стал церковным центром Франции. В 999 году другой ученик Герберта - Оттон 3 - стал правителем Римско-Германской империи. Тут уж Герберту пришлось стать римским папой - Сильвестром 2.

В Риме нового папу многие восприняли, как чернокнижника. Ведь он удивительно быстро считает с помощью арабской доски - абака - не пользуясь римскими цифрами! Да еще умеет предсказать исход бросания костей в игре! Он сам следит за движением звезд, строит благозвучные органы - хотя богословских споров избегает. Вдобавок, папа вместе с юным императором раздает королевские короны новокрещеным варварам Европы - норвежцам, мадьярам. Небывалый человек на престоле святого Петра!

Впрочем, политика Сильвестра 2 была успешна, и римляне начали понемногу привыкать к ученому папе. Но после смерти о нем пустили анекдот: будто в полночь на папском надгробии сами собой подпрыгивают игральные кости! Пятнадцатью веками раньше эллины сочинили немало сходных историй о Фалесе из Милета...

В отличие от Фалеса, пример Герберта не сразу сделался для европейцев предметом подражания. Нехватало широких контактов между Католическим и Исламским мирами. Они начались только в эпоху Крестовых походов - в конце 11 века, когда кастильские рыцари захватили половину Пиренейского полуострова и его древнюю столицу - Толедо. Вскоре туда потянулись многие последователи Герберта из Орильяка: Аделяр из Бата в Англии, Герардо из Кремоны в Италии. Все они стремились перевести на общедоступную латынь с арабского или с греческого языка труды древних ученых Эллады и Рима. Аделяр перевел "Начала" Евклида и ряд книг Хорезми; Герардо открыл для католиков Аристотеля и Птолемея.

Длинное название книги Птолемея ("Мегале Математике Синтаксис") арабы сократили до первого слова: получилось "Величие" - Аль-Магест. Новым европейцам понравилось второе слово - "Учение" (Математика). И вот с 12 века все европейцы называют так науку о числах и фигурах.

Первое столетие крестовых походов расширило кругозор очень многих европейцев. Особенно отличились жители приморских городов Италии: Венеции, Генуи, Пизы. Здешние мореходы переправляли крестоносцев и паломников в Святую землю, а купцы наживались, продавая добычу крестоносцев и иные "восточные" товары по всей Европе. Постепенно многие города католической Италии превратились в торговые республики, похожие на полисы античной Эллады. С начала 13 века в этих республиках заметна научная самодеятельность не только церковников, но и мирян - прежде всего, купцов.

В 1202 году появился первый "самодельный" учебник арифметики для широкого читателя - "Книга Абака". Его составил Леонардо Фибоначчи из Пизы (1180-1240), с детства причастный к торговым делам своего отца. Арифметике он научился в Алжире у местных мусульман, а теперь сам обучал единоверцев новому десятичному счету. Позднее Фибоначчи написал учебник "Практическая геометрия" и "Книгу квадратов". В них впервые были изложены (на латыни) правила действий с нулем и отрицательными числами, а также появились знаменитые числа Фибоначчи.

Тем временем на папский престол взошел второй ученый человек: Лотарио ди Конти ди Сеньи (1160-1216), выпускник Парижского университета. Потомки запомнили его под грозным именем Иннокентия 3 - "Раба рабов Божьих", помыкавшего королями и свергавшего герцогов или князей по всей Европе. Только король Франции Филипп 2 Август порою осмеливался противоречить грозному папе - в тех случаях, когда он мог опереться на авторитет Парижского университета. Так первые католические университеты заявили о своей независимости от любой духовной или светской власти. Наряду с городами-республиками Италии, они сделались рассадником независимой учености в Европе. Процветающий Католический Интернационал начал походить на созвездие полисов Эллады.

Английские университеты заявили о себе в середине 13 века. Тогда англичане, опираясь на свою первую конституцию (Великую Хартию Вольностей), попытались взять под контроль легкомысленного короля Генри 3 и его алчных фаворитов. Духовным лидером этого движения стал ученейший богослов - Роберт Гросетест ("Головастый"), епископ Линкольна (1175-1253). Он увлекся оптикой и пришел к мысли, что весь мир возник из света - самой совершенной формы материи. Более грубые тела получились при застывании света. Таким образом, Гросетест представил мир как результат игры двух начал - света и порядка, или (в понятиях 20 века) энергии и симметрии. Ни один современный физик или математик не станет с этим спорить!

Подобно античным натурфилософам, Гросетест не мог рассчитать свою физическую модель. Зато другая таинственная вещь - бесконечность - поддавалась расчету, и Гросетест увлекся этим делом. Он начал суммировать бесконечные ряды чисел, и вскоре научился отличать сходящийся ряд от расходящегося. Но и расходиться ряд может с разной скоростью. Гросетест заметил, что сумма натуральных чисел растет гораздо медленнее, чем сумма их квадратов, а сумма квадратов - медленнее, чем сумма последовательных степеней двойки. Так первый из христиан проник в область бесконечно больших и бесконечно малых величин - вслед за Архимедом и на 4 столетия опережая Ньютона. Хорошая компания для богослова!

Подобно Платону и Аристотелю, Гросетест очень заботился о воспроизводстве ученого сословия в Англии. Он считал, что античных классиков (особенно Аристотеля) нужно изучать в подлиннике, а не по дурным переводам на латынь, сделанным с арабских переводов оригинала. Для этого Гросетест пригласил в Англию ученых греков - беглецов из Константинополя, разоренного крестоносцами в 1204 году. Так в Оксфорде и Кембридже появились первые греческие профессора. Этот посев принес замечательные плоды. Среди учеников Гросетеста оказались выдающийся алхимик Роджер Бэкон (один из изобретателей пороха) и граф Симон де Монфор - организатор первого выборного парламента в Англии. Платон и Аристотель гордились бы такими учениками!

Коллегой и соперником Роберта Гросетеста на европейском континенте стал другой богослов - Фома Аквинский (1225-1274). Этот мрачноватый итальянец шел по стопам Аристотеля и Евклида, пытаясь изложить всю христианскую ученость в виде цепи определений, аксиом и теорем.

В отличие от Гросетеста, Фома не признавал рассуждений о бесконечности. Он был уверен, что у всякой вещи в природе есть исток, в котором она достигает наивысшего совершенства. Первоисток всех вещей - то есть, наиболее совершенную вещь в природе - Фома отождествил с Богом. А можно ли измерить степени совершенства разных природных объектов и самого Бога" Такая мысль не казалась Фоме ересью - но ответить на этот вопрос он не смог. Было ясно, что известных чисел нехватает для такого измерения. Только в 19 веке европейские математики Эварист Галуа и Феликс Кляйн научились измерять совершенство (то есть, симметрию) природных тел с помощью особой ветви математики - теории групп.

Итак, в 13 веке католические богословы научились задавать природе такие вопросы, которые потребовали создания новых разделов математики. Этот уровень знаний можно сравнить с уровнем пифагорейцев. Вскоре те же богословы достигли уровня сомнений Зенона из Элеи. Рядом с древними парадоксами об Ахиллесе и черепахе и о делении отрезка пополам появились парадоксы о Буридановом осле и о неподъемном камне.

Жан Буридан (1300-1358) был профессором Парижского университета (Сорбонны) в тяжкие годы Столетней войны между Англией и Францией и раскола в католической церкви. Король Франции попал в плен к англичанам; в Риме и в Авиньоне правили двое пап, не признающих и проклинающих один другого. В этих условиях "Святая Сорбонна" сделалась высшим авторитетом католической мысли: ее ученый совет не раз выносил приговоры в спорах между графами или кардиналами.

Например, Буриданов осел стоит между двух одинаковых кормушек с сеном. Какую из них он выберет, не зная понятий "правое" и "левое"" Или всемогущий Бог: может ли он создать такой камень, который он сам не сможет поднять" Вероятно, эти вопросы родились из студенческих шуток - но отвечать пришлось профессорам, и это было совсем не просто. Ведь спор шел не в тишине монашеской кельи, а в пылу ученого диспута - в присутствии сотен смышленых болельщиков. Согласно преданиям, Буридан был непобедим в подобных спорах; за это его выбрали ректором Сорбонны. Но окончательное решение таких парадоксов математики нашли лишь в начале 20 века - в рамках созданной Георгом Кантором теории множеств, которую один из ее противников назвал "не ветвью математики, а разделом богословия". Трудно привыкнуть к неожиданным новинкам в той области, где ты издавна чувствуешь себя знатоком и мастером!

Современники больше всего уважали Буридана за то, что он переспорил папу Иоанна 22 в споре о Страшном Суде: когда человек попадает в рай или в ад - сразу после смерти, или только в конце света" Для ученых 20 века важнее то, что Буридан переспорил Аристотеля: он первый открыл принцип инерции в прямолинейном или вращательном движении. Позднее этот постулат Буридана называли либо первым законом Ньютона, либо законом сохранения импульса, либо описанием наименьшей группы симметрий в классической механике. Слова могут быть разными, но суть одна: был сделан первый шаг дальше того рубежа, на котором остановились или споткнулись античные мыслители.

Другой шаг в ту же сторону сделал еще один профессор Сорбонны: Раймонд Луллий с острова Мальорка (1235-1315). Он не собирался спорить с Аристотелем или Евклидом - но он прочел их книги ("Органон" и "Начала") глазами инженера и подумал: можно построить машину, которая будет автоматически выполнять все арифметические действия с числами и логические операции над любыми утверждениями! Так в начале 14 века в Европе родился первый проект механического компьютера. Построить его Луллию не удалось: слишком низок был тогда уровень механического ремесла во всем мире. Но из книги Луллия "Великое искусство" видно, что автор сознавал возможные последствия компьютерной революции.

Раймонд Луллий вырос в Каталонии - отвоеванной у мусульман приморской части Андалузии. Он был разочарован прекращением крестовых походов: ведь юг Пиренейского полуострова все еще находится во власти мусульман, и Святая Земля вырвана ими из рук католиков. Но если мы не сумели одолеть иноверцев мечом - надо одолеть их умом! Аристотель и Евклид изложили все правила и методы верных умозаключений. Если нам удастся воплотить эти правила в механическом устройстве, то христианская наука быстро превзойдет все достижения мусульман, и на земле наступит царство Христа!

Эти мечты католического мыслителя до странности напоминают мечты Аристотеля: стоит эллинам покорить всех варваров, как на Земле наступят общий мир и благодать. Однако Аристотель видел лишь один путь к этому счастью - политический, через всемирную монархию Александра Македонского или иного просвещенного завоевателя. Воображению Луллия открылся другой путь - через научно-техническую революцию. Ее зарю возвестил гром пушек: они появились в Европе еще при жизни Луллия.

Однако решающий прорыв из Средневековья в Новое время европейцы совершили, когда изобрели печатный станок с подвижным металлическим шрифтом. В 1454 году Иоганн Гутенберг напечатал в Майнце первые 300 экземляров Библии и положил начало информационной революции - столь же важной, как появление алфавита в Элладе в 8 веке до н.э., или появление электронных компьютеров в середине 20 века. В 1482 году в Венеции была впрервые напечатана (по латыни) книга Евклида "НГачала". С этого момента для математиков кончилось Средневековье и началось Новое время.  [Ист.3]http://www.kazedu.kz/referat/13191

ГЛАВА 4. Математика переменных величин

С 17 века начинается существенно новый период развития математики. "Поворотным пунктом в математике была Декартова переменная величина. Благодаря этому в математику вошли движение и тем самым диалектика и благодаря этому же стало немедленно необходимым дифференциальное и интегральное исчисление..." (Энгельс Ф., см. Маркс К. и Энгельс Ф., Сочинения, 2 изд., т. 20, с. 573). Круг количественных отношений и пространственных форм, изучаемых теперь М., уже не исчерпывается числами, величинами и геометрическими фигурами. В основном это было обусловлено явным введением в М. идей движения и изменения (см. Переменные и постоянные величины). Уже в алгебре в скрытом виде содержится идея зависимости между величинами (значение суммы зависит от значений слагаемых и т. д.). Однако чтобы охватить количественные отношения в процессе их изменения, надо было самые зависимости между величинами сделать самостоятельным предметом изучения. Поэтому на первый план выдвигается понятие функции, играющее в дальнейшем такую же роль основного и самостоятельного предмета изучения, как ранее понятия величины или числа. Изучение переменных величин и функциональных зависимостей приводит далее к основным понятиям математического анализа, вводящим в М. в явном виде идею бесконечного, к понятиям пределапроизводнойдифференциала и интеграла. Создаётся анализ бесконечно малых, в первую очередь в виде дифференциального исчисления иинтегрального исчисления, позволяющий связывать конечные изменения переменных величин с их поведением в непосредственной близости отдельных принимаемых ими значений. Основные законы механики и физики записываются в форме дифференциальных уравнений, и задача интегрирования этих уравнений выдвигается в качестве одной из важнейших задач М. Разыскание неизвестных функций, определённых другого рода условиями, составляет предмет вариационного исчисления. Таким образом, наряду с уравнениями, в которых неизвестными являются числа, появляются уравнения, в которых неизвестны и подлежат определению функции.

Предмет изучения геометрии также существенно расширяется с проникновением в геометрию идейдвижения и преобразования фигур. Геометрия начинает изучать движение и преобразования сами по себе. Например, в проективной геометрии одним из основных объектов изучения являются сами проективные преобразования плоскости или пространства. Впрочем, сознательное развитие этих идей относится лишь к концу 18 века и началу 19 века. Гораздо раньше, с созданием в 17 веке аналитической геометрии, принципиально изменилось отношение геометрии к остальной М.: был найден универсальный способ перевода вопросов геометрии на язык алгебры и анализа и решения их чисто алгебраическими и аналитическими методами, а с другой стороны, открылась широкая возможность изображения (иллюстрирования) алгебраических и аналитических фактов геометрически, например при графическом изображении функциональных зависимостей (см. Координаты).

Алгебра 17 и 18 веков в значительной мере посвящена следствиям, вытекающим из возможности изучать левую часть уравнения Р(х) = 0 как функцию переменного х. Этот подход к делу позволил изучить вопрос о числе действительных корней, дать методы их отделения и приближённого вычисления, в комплексной же области привёл французского математика Ж. Д’Аламбера к не вполне строгому, но для математиков 18 века достаточно убедительному доказательству "основной теоремы алгебры" о существовании у любого алгебраического уравнения хотя бы одного корня. Достижения "чистой" алгебры, не нуждающейся в заимствованных из анализа понятиях о непрерывном изменении величин, в 17—18 веках были тоже значительны (достаточно указать здесь на решение произвольных систем линейных уравнений при помощи определителей, разработку теории делимости многочленов, исключения неизвестных и т. д.), однако сознательное отделение собственно алгебраических фактов и методов от фактов и методов математического анализа типично лишь для более позднего времени (2-я половина 19 века — 20 век). В 17—18 веках алгебра в значительной мере воспринималась как первая глава анализа, в которой вместо исследования произвольных зависимостей между величинами и решения произвольных уравнений ограничиваются зависимостями и уравнениями алгебраическими.

Создание новой М. переменных величин в 17 веке было делом учёных передовых стран Западной Европы, в первую очередь И. Ньютона и Г. Лейбница. В 18 веке одним из основных центров научных математических исследований становится также Петербургская академия наук, где работал ряд крупнейших математиков того времени иностранного происхождения (Л. Эйлер, Д. Бернулли) и постепенно складывается русская математическая школа, блестяще развернувшая свои исследования с начала 19 века.

17 век. Охарактеризованный выше новый этап развития М. органически связан с созданием в 17 веке математического естествознания, имеющего целью объяснение течения отдельных природных явлений действием общих, математически сформулированных законов природы. На протяжении 17 века действительно глубокие и обширные математические исследования относятся лишь к двум областям естественных наук — к механике [Г. Галилей открывает законы падения тел (1632, 1638), И. Кеплер — законы движения планет (1609, 1619), И. Ньютон — закон всемирного тяготения (1687)] и к оптике [Г. Галилей (1609) и И. Кеплер (1611) сооружают зрительные трубы, И. Ньютон развивает оптику на основе теории истечения, Х. Гюйгенс и Р. Гук — на основе волновой теории]. Тем не менее рационалистическая философия 17 века выдвигает идею универсальности математического метода (Р. Декарт, Б. Спиноза, Г. Лейбниц), придающую особенную яркость устремлениям этой, по преимуществу философской, эпохи в развитии М.

Серьёзные новые математические проблемы выдвигают перед М. в 17 веке навигация (необходимость усовершенствования часового дела и создания точных хронометров), а также картография, баллистика, гидравлика. Авторы 17 века понимают и любят подчёркивать большое практическое значение М. Опираясь на свою тесную связь с естествознанием, М. 17 века смогла подняться на новый этап развития. Новые понятия, не укладывающиеся в старые формально-логические категории М., получали своё оправдание в соответствии реальным соотношениям действительного мира. Так, например, реальность понятия производной вытекала из реальности понятия скорости в механике; поэтому вопрос заключался не в том, можно ли логически оправдать это понятие, а лишь в том, как это сделать.

Математические достижения 17 века начинаются открытием логарифмов (Дж. Непер, опубликовавший свои таблицы в 1614). В 1637 Р. Декарт публикует свою "Геометрию", содержащую основы координатного метода в геометрии, классификацию кривых с подразделением их на алгебраические и трансцендентные. В тесной связи с возможностью представить корни уравнения Р(х) = 0 точками пересечения кривой y = Р(х)с осью абсцисс в алгебре исследуются действительные корни уравнения любой степени (Р. Декарт, И. Ньютон, М. Ролль). Исследования П. Ферма о максимумах и минимумах и разыскании касательных к кривым уже содержат в себе по существу приёмы дифференциального исчисления, но самые эти приёмы ещё не выделены и не развиты. Другим источником анализа бесконечно малых является развитый И. Кеплером (1615) и Б. Кавальери (1635) "неделимых" метод, примененный ими к определению объёмов тел вращения и ряду других задач. Так, в геометрической форме были по существу созданы начала дифференциального и интегрального исчисления.

Параллельно развивается учение о бесконечных рядах. Свойства простейших рядов, начиная с геометрической прогрессии, изучил Дж. Валлис (1685). Н. Меркатор (1668) получил разложение In(1 + x) в степенной ряд. И. Ньютон нашёл (1665—69) формулу бинома для любого показателя, степенные ряды функций ex, sinx, arc sinx. В дальнейшем развитии учения о бесконечных рядах приняли участие почти все математики 17 века (Дж. Валлис, Х. Гюйгенс, Г. Лейбниц, Я. Бернулли и другие).

С созданием координатного метода и распространением представлений о направленных механических величинах (скорости, ускорения) понятие отрицательного числа приобрело полную наглядность и ясность. Наоборот, комплексные числа, по-прежнему оставаясь побочным продуктом алгебраического аппарата, продолжали быть по преимуществу лишь предметом бесплодных споров.

К последней трети 17 века относится открытие дифференциального и интегрального исчисления в собственном смысле слова. В отношении публикации приоритет этого открытия принадлежит Г. Лейбницу, давшему развёрнутое изложение основных идей нового исчисления в статьях, опубликованных в 1682—86. В отношении же времени фактического получения основных результатов имеются все основания считать приоритет принадлежащим И. Ньютону, который к основным идеям дифференциального и интегрального исчисления пришёл в течение 1665—66. "Анализ с помощью уравнений" И. Ньютона в 1669 был передан им в рукописи английским математикам И. Барроу и Дж. Коллинзу и получил широкую известность среди английских математиков. "Метод флюксий" — сочинение, в котором И. Ньютон дал вполне законченное систематическое изложение своей теории, — был написан в 1670—71 (издан в 1736). Г. Лейбниц же начал свои исследования по анализу бесконечно малых лишь в 1673. И. Ньютон и Г. Лейбниц впервые в общем виде рассмотрели основные для нового исчисления операции дифференцирования и интегрирования функций, установили связь между этими операциями (так называемая формула Ньютона — Лейбница) и разработали для них общий единообразный алгоритм. Подход к делу у И. Ньютона и Г. Лейбница, однако, различен. Для И. Ньютона исходными понятиями являются понятия "флюенты" (переменной величины) и её "флюксий" (скорости её изменения). Прямой задаче нахождения флюксий и соотношений между флюксиями по заданным флюентам (дифференцирование и составление дифференциальных уравнений) И. Ньютон противопоставлял обратную задачу нахождения флюент по заданным соотношениям между флюксиями, то есть сразу общую задачу интегрирования дифференциальных уравнений; задача нахождения первообразной появляется здесь как частный случай интегрирования дифференциального уравнения

dy/dx = f(x).

Такая точка зрения была вполне естественна для И. Ньютона как создателя математического естествознания: его исчисление флюксий являлось просто отражением той идеи, что элементарные законы природы выражаются дифференциальными уравнениями, а предсказание хода описываемых этими уравнениями процессов требует их интегрирования (см. Флюксий исчисление). Для Г. Лейбница в центре внимания находился вопрос о переходе от алгебры конечного к алгебре бесконечно малых; интеграл воспринимался прежде всего как сумма бесконечно большого числа бесконечно малых, а основным понятием дифференциального исчисления являлись дифференциалы — бесконечно малые приращения переменных величин (наоборот, И. Ньютон, вводя соответствующее понятие "момента", стремился в более поздних работах от него освободиться). С публикации работ Г. Лейбница в континентальной Европе начался период интенсивной коллективной работы над дифференциальным и интегральным исчислением, интегрированием дифференциальных уравнений и геометрическими приложениями анализа, в которой принимали участие, кроме самого Г. Лейбница, Я. Бернулли, И.Бернулли, Г. Лопиталь и другие. Здесь создаётся современный стиль математической работы, при котором полученные результаты немедленно публикуются в журнальных статьях и уже очень скоро после опубликования используются в исследованиях других учёных.

Кроме аналитической геометрии, развивается в тесной связи с алгеброй и анализом дифференциальная геометрия, в 17 веке закладываются основы дальнейшего развития чистой геометрии главным образом в направлении создания основных понятий проективной геометрии. Из других открытий 17 века следует отметить исследования по теории чисел (Б. Паскаль, П. Ферма); разработку основных понятий комбинаторики (П. Ферма, Б. Паскаль, Г. Лейбниц); первые работы по теории вероятностей (П. Ферма, Б. Паскаль), увенчавшиеся в конце века результатом принципиального значения — открытием простейшей формы больших чисел закона (Я. Бернулли, опубликован в 1713). Необходимо указать ещё на построение Б. Паскалем (1641) и Г. Лейбницем (1673—74) первых счётных машин, оставшееся надолго, впрочем, без практических последствий.

18 век. В начале 18 века общий стиль математических исследований постепенно меняется. Успех 17 века, обусловленный в основном новизной метода, создавался главным образом смелостью и глубиной общих идей, что сближало М. с философией. К началу 18 века развитие новых областей М., созданных в 17 веке, достигло того уровня, при котором дальнейшее продвижение вперёд стало требовать в первую очередь искусства в овладении математическим аппаратом и изобретательности в разыскании неожиданных обходных решений трудных задач. Из двух величайших математиков 18 века Л. Эйлер является наиболее ярким представителем этой виртуозной тенденции, а Ж. Лагранж, быть может, уступая Л. Эйлеру в количестве и разнообразии решенных задач, соединил блестящую технику с широкими обобщающими концепциями, типичными для французской математической школы 2-й половины 18 века, тесно связанной с большим философским движением французских просветителей и материалистов. Увлечение необычайной силой аппарата математического анализа приводит, естественно, к вере в возможность его чисто автоматического развития, в безошибочность математических выкладок даже тогда, когда в них входят символы, лишённые смысла. Если при создании анализа бесконечно малых сказывалось неумение логически справиться с идеями, имевшими полную наглядную убедительность, то теперь открыто проповедуется право вычислять по обычным правилам лишённые непосредственно смысла математические выражения, не опираясь ни на наглядность, ни на какое-либо логическое оправдание законности таких операций. Из старшего поколения в эту сторону всё больше склоняется Г. Лейбниц, который в 1702 по поводу интегрирования рациональных дробей при помощи их разложения на мнимые выражения говорит о "чудесном вмешательстве идеального мира" и т. п. Более реалистически настроенный Л. Эйлер не говорит о чудесах, но воспринимает законность операций с мнимыми числами и с расходящимися рядами как эмпирический факт, подтверждаемый правильностью получаемых при помощи подобных преобразований следствий. Хотя работа по рациональному уяснению основ анализа бесконечно малых была начата, систематическое проведение логического обоснования анализа было осуществлено лишь в 19 веке.

Если виднейшие математики 17 века очень часто были в то же время философами или физиками-экспериментаторами, то в 18 веке научная работа математика становится самостоятельной профессией. Математики 18 века — это люди из разных кругов общества, рано выделившиеся своими математическими способностями, с быстро развивающейся академической карьерой (Л. Эйлер, происходя из пасторской семьи в Базеле, в возрасте 20 лет был приглашен адъюнктом в Петербургскую академию наук, 23 лет становится там же профессором, 39 лет — председателем физико-математического класса Берлинской академии наук; Ж. Лагранж — сын французского чиновника, 19 лет — профессор в Турине, 30 лет — председатель физико-математического класса Берлинской академии наук; П. Лаплас — сын французского крестьянина, 22 лет — профессор военной школы в Париже, 36 лет — член Парижской академии наук). При этом, однако, математическое естествознание (механика, математическая физика) и технические применения М. остаются в сфере деятельности математиков. Л. Эйлер занимается вопросами кораблестроения и оптики, Ж. Лагранж создаёт основы аналитической механики, П. Лаплас, считавший себя в основном математиком, также является крупнейшим астрономом и физиком своего времени и так далее.

М. 18 века обогатилась многими выдающимися результатами. Благодаря работам Л. Эйлера, Ж. Лагранжа и А. Лежандра теория чисел приобретает характер систематической науки. Ж. Лагранж дал (1769, опубликовано в 1771) общее решение неопределённых уравнений второй степени. Л. Эйлер установил (1772, опубликован в 1783) закон взаимности для квадратичных вычетов. Он же привлек (1737, 1748, 1749) для изучения простых чисел дзета-функцию, чем положил начало аналитической теории чисел.

При помощи разложений в непрерывные дроби Л. Эйлер доказал (1737, опубликовано в 1744) иррациональность е и e2, а И. Ламберт (1766, опубликовано в 1768) — иррациональность p. В алгебре Г.Крамер (1750) ввёл для решения систем линейных уравнений определители. Л. Эйлер рассматривал как эмпирически установленный факт существование у каждого алгебраического уравнения корня вида  . Постепенно укореняется убеждение, что вообще мнимые выражения (не только в алгебре, но и в анализе) всегда приводимы к виду  . Ж. Д’Аламбер доказал (1748), что модуль многочлена не может иметь минимума, отличного от нуля (так называемая лемма Д’Аламбера), считая это за доказательство существования корня у любого алгебраического уравнения. Формулы А. Муавра и Л. Эйлера, связывающие показательную и тригонометрическую функции комплексных аргументов, привели к дальнейшему расширению применений комплексных чисел в анализе. И. Ньютон, Дж. Стирлинг, Л. Эйлер и П. Лаплас заложили основы конечных разностей исчисления. Б. Тейлор открыл (1715) свою формулу разложения произвольной функции в степенной ряд. У исследователей 18 века, особенно у Л. Эйлера, ряды становятся одним из самых мощных и гибких орудий анализа. С Ж. Д’Аламбера начинается серьёзное изучение условий сходимости рядов. Л. Эйлер, Ж. Лагранж и особенно А. Лежандр заложили основы исследования эллиптических интегралов — первого вида неэлементарных функций, подвергнутого глубокому специальному изучению. Большое внимание уделялось дифференциальным уравнениям, в частности Л. Эйлер дал (1739, опубликован в 1743) первый метод решения линейного дифференциального уравнения любого порядка с постоянными коэффициентами, Ж. Д’Аламбер рассматривал системы дифференциальных уравнений, Ж. Лагранж и П. Лаплас развивали общую теорию линейных дифференциальных уравнений любого порядка. Л. Эйлер, Г. Монж и Ж. Лагранж заложили основы общей теории дифференциальных уравнений с частными производными первого порядка, а Л. Эйлер, Г. Монж и П. Лаплас — второго порядка. Специальный интерес представляет введение в анализ разложения функций в тригонометрические ряды, так как в связи с этой задачей между Л. Эйлером, Д.Бернулли, Ж. Д’Аламбером, Г. Монжем и Ж. Лагранжем развернулась полемика по вопросу о понятии функции, подготовившая фундаментальные результаты 19 века о соотношении между аналитическим выражением и произвольным заданием функции. Наконец, новым отделом анализа, возникшим в 18 веке, является вариационное исчисление, созданное Л. Эйлером и Ж. Лагранжем. А. Муавр, Я. Бернулли, П. Лаплас на основе отдельных достижений 17—18 веков заложили начала вероятностей теории.

В области геометрии Л. Эйлер привёл к завершению систему элементарной аналитической геометрии. В работах Л. Эйлера, А. Клеро, Г. Монжа и Ж. Менье были заложены основы дифференциальной геометрии пространственных кривых и поверхностей. И. Ламберт развил теорию перспективы, а Г. Монж придал окончательную форму начертательной геометрии.

Из приведённого обзора видно, что М. 18 века, основываясь на идеях 17 века, по размаху работы далеко превзошла предыдущие века. Этот расцвет М. был связан по преимуществу с деятельностью академий; университеты играли меньшую роль. Отдалённость крупнейших математиков от университетского преподавания возмещалась той энергией, с которой все они, начиная с Л. Эйлера и Ж. Лагранжа, писали учебники и обширные, включающие отдельные исследования, трактаты.  [ Ист.1] http://slovari.yandex.ru/~книги/БСЭ/Математика 

ГЛАВА 5. Период современно математики

Для рассмотренных выше трех периодов развития математики характерна убежденность в том, что эта наука непосредственно отражает свойства реального мира, лишь в несколько идеализированной форме. Ни у кого не возникало сомнения в том, что существует лишь одна геометрия, данная на все времена Евклидом и непосредственно отражающая свойства реального пространства, что свойства производной полностью совпадают с известными из физики свойствами скорости. Иными словами, считали, что математические объекты нам даны и не в нашей власти приписывать им произвольные свойства, так же как физик не может изменить какое-нибудь природное явление. При таком подходе не могло быть и речи об уклонении от изучения чисел и фигур.

Однако еще в конце XVII в. Лейбниц указывал на иные задачи .математической науки. Он считал, что «универсальная математика — это, так сказать, логика воображения» и она должна изучать «все, что в области воображения поддается точному определению». Главной частью так понимаемой математики была для него наука об абстрактных соотношениях между математическими объектами, наука, в которой изучают одинаковое и различное, похожее и непохожее, абсолютное и относительное расположения, в то время как обычная математика занимается большим и малым, единицей и многим, целым и частью. Лейбниц ставил и задачу о развитии операций над высказываниями. Но уровень математической науки в то время был еще недостаточен для решения столь грандиозных задач.

Лишь в начале XIX в. появляются первые работы, давшие новый толчок математической мысли в направлении исследования предмета математики и знаменовавшие зарождение нового, четвертого периода истории математики. Первый удар классическим концепциям нанесло построение в 20-х годах XIX в. гиперболической неевклидовой геометрии, сделанное великим русским математиком Н. И. Лобачевским и независимо от него (хотя и несколько позже) венгерским ученым Я. Больяй.

Открытие неевклидовой геометрии потребовало отказа от претензий предшествующих веков на «абсолютную истинность» евклидовой геометрии, от точки зрения на аксиомы как на истины, не требующие доказательства в силу своей очевидности. Оказалось, что аксиомы скорее являются гипотезами, и речь идет о том, насколько построенные с их помощью модели соответствуют материальному миру. Это послужило стимулом к глубоким исследованиям в области оснований математики, к критике системы аксиом Евклида, к выяснению того, какими свойствами может и должна обладать система аксиом. В дальнейшем это привело к созданию аксиоматического метода, ставшего теперь одним из ведущих методов познания не только в математике, но и в иных математизируемых дисциплинах (математической экономике, математической лингвистике и т. д.).

Важным этапом в развитии новых взглядов на математику явились исследования Римана, показавшие неограниченное разнообразие геометрических пространств, отличающихся друг от друга размерностью, формулами для вычисления расстояний и т. д. Стали изучаться и пространства с комплексными координатами, а также пространства, элементами которых являются не точки, а прямые, окружности, сферы и даже функции и последовательности (функциональные пространства). Изучение функциональных пространств в дальнейшем привело к созданию новой ветви математики — функционального анализа, в котором геометрические понятия и идеи применяются для решения задач математического анализа.

Следует отметить, что восхождение от чувственного осязаемого, реального пространства к абстрактным математическим пространствам не означало отхода математики от отображения реального действительного мира. Например, при создании в начале XX в. теории относительности были использованы геометрические идеи, разработанные за полвека до того Б. Риманом, а в квантовой механике используют бесконечномерные пространства и линейные операторы в этих пространствах.

Качественные изменения произошли в начале XIX столетия и в алгебре. В XVI—XVIII вв. алгебра занималась в основном решением уравнений и систем уравнений, а также правилами преобразований буквенных выражений, причем буквы в этих выражениях означали некоторые числа. Таким образом, алгебра той эпохи была в своей основе учением об общих свойствах арифметических действий над числами, учением о формальных правилах преобразования выражений и решения уравнений.

Однако к середине XIX в. понятие исчисления было расширено. Различного вида операции начали производить не только над числами, но и над векторами, кватернионами, матрицами, логическими высказываниями и т. д. Правила этих действий отличались от привычных правил действий над числами. Изучение таких исчислений привело к необходимости исследовать общие свойства алгебраических операций в произвольных множествах.

Изучение различных операций сочеталось с изучением таких алгебраических структур, как группы и кольца, а позднее — поля, решетки и т. д. Эти структуры первоначально возникли из конкретных задач алгебры и геометрии. Например, понятие группы было введено в 30-х годах XIX в. Э. Галуа в связи с задачей о разрешимости уравнений в радикалах.

В дальнейшем предметом алгебры становится изучение разного рода алгебраических структур, порождаемых в множествах введением различных операций. Этим значительно расширилось поле приложения алгебраических методов. Одна и та же алгебраическая теория (например, теория групп, теория коммутативных групп, теория колец, теория полей и т. д.), описывающая определенный род алгебраических структур, может применяться к любой структуре этого рода, в какой бы предметной области она ни встретилась.

В конце XIX в. идеи теории групп стали применяться в геометрии, Этот подход в геометрии был впервые сформулирован в 1872 г. немецким математиком Ф. Клейном в его знаменитой Эрлангенской программе. Геометрия рассматривается Клейном как наука, изучающая свойства фигур, не изменяющиеся при преобразованиях из той или иной группы. Выбирая различные группы геометрических преобразований (группы перемещений, подобий, аффинную, проективную, конформную и т. д.), можно получить различные геометрии. А поскольку отыскание инвариантов данной группы является алгебраической задачей, то была установлена новая связь между алгеброй и геометрией.

Глубокие сдвиги произошли и в области математического анализа. В ходе развития математики в XVIII в. не придавалось большого внимания строгости рассуждения. Это привело к целому ряду неясностей и даже к «скандалам в математике». Поэтому пришлось критически пересмотреть основные понятия математического анализа, начиная с понятия действительного числа. Лишь во второй половине XIX в. это понятие оказалось «арифметизировано», т. е. сведено к понятию натурального числа. Наряду с действительными числами в математическом анализе начинают применять и комплексные числа, что привело к созданию новой ветви математики — теории функций комплексного переменного.

Критическому анализу были подвергнуты такие понятия математического анализа, как «предел функции», «непрерывность», «производная», «интеграл». Им были даны определения, отличавшиеся большей строгостью и общностью. Это позволило заметить, что, например, понятия функции и геометрического преобразования весьма близки друг к другу, и применить идею непрерывности в случаях, весьма далеких от наглядности. Были уточнены понятия длины, площади и объема и расширена область их применимости.

Исследования по теории интеграла и рядов Фурье привели к детальному изучению разрывных функций, а позднее — к появлению теории точечных множеств, т. е. множеств, состоящих из точек координатной прямой или плоскости.

Дальнейшее развитие теории множеств показало ее приложимость к самым различным вопросам математики — алгебры и геометрии, математического анализа и теории вероятностей. Общие методы и понятия теории множеств позволили охватить с единой точки зрения области математики, казавшиеся весьма удаленными друг от друга, дали возможность сравнивать мощности различных множеств, т. е. как бы «градуировать бесконечность».

Все сказанное привело к формированию нового взгляда на предмет математики — стало ясно, что она изучает различные структуры, которые могут встречаться в различных предметных областях. Выявились общие идеи, лежащие в основе различных областей математики. Начиная с этого момента выход на арену аксиоматического метода становится общепризнанным фактом.

Важную роль в распространении этих идей сыграло завершение работ по аксиоматизации евклидовой геометрии. После критического анализа аксиом Евклида первая полная система аксиом была создана немецким ученым М. Пашем. В 1894 г. появилась книга Д. Гильберта «Основания геометрии». В этой книге аксиомы геометрии были разбиты на группы и был исследован вопрос об их независимости, для чего Гильберт построил самые разнообразные «геометрии», совсем непохожие на евклидову. Таким образом, в области, рассматривавшейся до того, как одна из наиболее близких к действительности, была показана возможность построения науки, исходя из .произвольно выбранных постулатов. Разумеется, этот произвол не следует понимать слишком буквально — плодотворными оказываются лишь те системы аксиом, которые правильно отражают те или иные стороны действительности.

После указанных выше работ сложилась концепция математики, которую академик А. Н. Колмогоров характеризует следующими двумя тезисами:

А) ^ В основе всей математики лежит чистая теория множеств.

Б) Специальные разделы математики занимаются структурами, принадлежащими к тем или иным специальным родам структур. Каждый род структур определяется соответствующей системой аксиом. Математика интересуется только теми свойствами структур, которые вытекают из принятой системы аксиом, т. е. изучает структуры только с точностью до изоморфизма.

Точка зрения, выраженная в этих тезисах, получила наиболее полное отражение в работах группы современных французских математиков (А. Вейль, Ж. Дьедонне и др.), публикующих свои труды под общим псевдонимом «Николя Бурбаки». Имя выпускается многотомное издание «Элементы математики», в котором наиболее важные разделы современной математики рассматриваются с указанной выше точки зрения (это издание еще далеко от завершения). Поэтому такую точку зрения часто называют «бурбакистской», хотя в ее формировании важную роль сыграли труды многих математиков XIX и XX вв., писавших задолго до появления книг Н. Бурбаки.

Важной вехой в развитии теории вероятностей было создание аксиоматики этой науки А. Н. Колмогоровым. Благодаря этому было показано, что теорию вероятностей можно рассматривать как теорию мер особого вида, и потому к ней применимы методы теории функций действительного переменного.

Систематическое применение аксиоматического метода позволило выявить связи между областями математики, казавшимися очень далекими друг от друга, найти пути преодоления тенденции к расщеплению математики на почти независимые области и укрепить тем самым единство математической науки. Оно дало ряд важных результатов благодаря выявившейся возможности применять методы, выработанные в одних областях математики, к иным областям, связанным с ними единством структуры.  [Ист.4]http://do.gendocs.ru/docs/index-39821.html?page=3




1. Курсовая работа- Управление изменениями на предприятиях
2. Thon отбор IT проектов на preseed стадии
3. Лабораторна робота Студентки 1го курсу Групи ПО12 Охріменко Ніни КупалаКупайлиця Виступ Голови
4. Культура організації та корпоративна політика
5. Шаблон был создан на основе существующего документа ~ приказа
6. Реферат Нейродермит
7. Договор и законодательство Российская Федерация п
8. тематичних наук Харків~1999 Дисертацією є рукопис
9. Отрицательный отбор и моральный риск на рынке страховых услуг
10. Организация труда при ведении общесудовых работ
11. тематические методы в психологии Многомерное шкалирование
12. Использование линий электропроводки в качестве среды передачи информации
13. вариант. Действительно весьма утомительно читать большие куски текста сидя перед монитором.html
14. педагогических приемов методов подходов к решению возникающих проблем
15. Музичне мистецтво- За освітньокваліфікаційними рівнями- Бакалавр кваліфікація ~ вчитель музи
16. доклада на эту традиционную для нашего журнала тему а также принятое на конференции заявление участников пр
17. Поняття та класифікація управлінських рішень Конфлікти в організації
18. на печать. Так же она много чего на почту прислала смотрим и читаем.
19. Культура и цивилизация в ХХ столетии
20. Сочинение- Развитие образной выразительности у детей на занятиях по изодеятельности