У вас вопросы?
У нас ответы:) SamZan.net

Рассмотрено Согласовано Утвержд

Работа добавлена на сайт samzan.net: 2015-07-05

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 18.2.2025

Муниципальное   бюджетное  общеобразовательное учреждение

Средняя образовательная школа № ___  

«Рассмотрено»                                     «Согласовано»                              «Утверждаю»

на заседании методического     Заместитель директора по            Директор МОУ СОШ № ___

объединения учителей               УВР_____________                        ______________________

Протокол №1                               

                                                     от «_____» августа 2014г                 Протокол №            

от «____»августа  2014г                                                                         от «_____» августа 2014 г

Руководитель МО

_________________

Рабочая программа

по математике

для  1 класса

4 часа  неделю (всего 132 часа)  

2013-2014 учебный год 

I. Пояснительная записка

Программа разработана на основе Федерального государственного образовательного стандарта начального общего образования, Концепции духовно-нравственного развития и воспитания личности гражданина России, планируемых результатов начального общего образования.

Курс математики для 1–4 классов начальной школы, реализующий данную программу, является частью непрерывного курса математики для дошкольников, начальной школы и 5−6 классов средней школы образовательной системы «Школа 2000...» и, таким образом, обеспечивает преемственность математической подготовки между ступенями дошкольного, начального и общего среднего образования.

I.1. Цели и задачи курса математики для 1–4 классов начальной школы

Основными целями курса математики для 1–4 классов, в соответствии с требованиями ФГОС НОО, являются:

− формирование у учащихся основ умения учиться;

− развитие их мышления, качеств личности, интереса к математике;

− создание для каждого ребенка возможности высокого уровня математи ческой подготовки.

Соответственно, задачами данного курса являются:

1) формирование у учащихся способностей к организации своей учебной деятельности посредством освоения личностных, познавательных, регулятивных и коммуникативных универсальных учебных действий;

2) приобретение опыта самостоятельной математической деятельности по получению нового знания, его преобразованию и применению;

3) формирование специфических для математики качеств мышления, необходимых человеку для полноценного функционирования в современном обществе, и в частности, логического, алгоритмического и эвристического мышления;

4) духовнонравственное развитие личности, предусматривающее, с учетом специфики начального этапа обучения математике, принятие нравственных установок созидания, справедливости, добра, становление основ гражданской российской идентичности, любви и уважения к своему Отечеству;

5) формирование математического языка и математического аппарата как средства описания и исследования окружающего мира и как основы компьютерной грамотности;

6) реализация возможностей математики в формировании научного мировоззрения учащихся, в освоении ими научной картины мира с учетом возрастных особенностей учащихся;

7) овладение системой математических знаний, умений и навыков, необходимых для повседневной жизни и для продолжения образования в средней школе;

8) создание здоровьесберегающей информационно-образовательной среды.

I.2. Общая характеристика курса

Содержание курса математики строится на основе:

системнодеятельностного подхода, методологическим основанием которого является общая теория деятельности (Л.С. Выготский, А.Н. Леонтьев, Г.П. Щедровицкий, О.С. Анисимов и др.);

системного подхода к отбору содержания и последовательности

изучения математических понятий, где в качестве теоретического основания выбрана Система начальных математических понятий (Н.Я. Виленкин);

дидактической системы деятельностного метода «Школа 2000...» (Л.Г. Петерсон)2. Педагогическим инструментом реализации поставленных целей в курсе математики является дидактическая система деятельностного метода «Школа 2000...»…3. Суть ее заключается в том, что учащиеся не получают знания в готовом виде, а добывают их сами в процессе собственной учебной деятельности. В результате школьники приобретают личный опыт математической деятельности и осваивают систему знаний по математике, лежащих в основе современной научной картины мира. Но, главное, они осваивают весь комплекс универсальных учебных действий (УУД), определенных ФГОС, и умение учиться в целом.

Основой организации образовательного процесса в дидактической системе «Школа 2000...» является технология деятельностного метода (ТДМ), которая помогает учителю включить учащихся в самостоятельную учебно-познавательную деятельность.

Структура ТДМ, с одной стороны, отражает обоснованную в методологии общую структуру учебной деятельности (Г.П. Щедровицкий, О.С. Анисимов и др.), а с другой стороны, обеспечивает преемственность с традиционной школой в формировании у учащихся глубоких и прочных знаний, умений и навыков по математике. Например, структура уроков по ТДМ, на которых учащиеся открывают новое знание, имеет вид:

1. Мотивация к учебной деятельности.

Данный этап процесса обучения предполагает осознанное вхождение учащихся в пространство учебной деятельности на уроке. С этой целью организуется их мотивирование на основе механизма «надо» − «хочу» − «могу».

2. Актуализация и фиксирование индивидуального затруднения в пробном учебном действии.

На данном этапе организуется подготовка учащихся к открытию нового знания, выполнение ими пробного учебного действия, фиксация индивидуального затруднения. Завершение этапа связано с организацией обдумывания учащимися возникшей проблемной ситуации.

3. Выявление места и причины затруднения.

На данном этапе учитель организует выявление учащимися места и причины возникшего затруднения на основе анализа проблемной ситуации.

4. Построение проекта выхода из затруднения. Учащиеся в коммуникативной форме обдумывают проект будущих учебных действий: ставят цель, формулируют тему, выбирают способ, строят план достижения цели и определяют средства. Этим процессом руководит учитель.

5. Реализация построенного проекта.

На данном этапе осуществляется реализация построенного проекта: обсуждаются различные варианты, предложенные учащимися, и выбирается

оптимальный вариант, который фиксируется вербально и знаково (в форме

эталона). Построенный способ действий используется для решения исходной

задачи, вызвавшей затруднение. В завершение уточняется общий характер

нового знания и фиксируется преодоление возникшего затруднения.

6. Первичное закрепление с проговариванием во внешней речи.

На данном этапе учащиеся в форме коммуникативного взаимодействия

(фронтально, в парах, в группах) решают типовые задания на новый способ

действий с проговариванием алгоритма решения вслух.

7. Самостоятельная работа с самопроверкой по эталону.

При проведении данного этапа используется индивидуальная форма работы: учащиеся самостоятельно выполняют задания нового типа и осуществляют их самопроверку, пошагово сравнивая с эталоном. В завершение организуется рефлексия хода реализации построенного проекта и контрольных процедур.

Эмоциональная направленность этапа состоит в организации для каждого ученика ситуации успеха, мотивирующей его к включению в дальнейшую познавательную деятельность.

8. Включение в систему знаний и повторение.

На данном этапе выявляются границы применимости нового знания и

выполняются задания, в которых новый способ действий предусматривается

как промежуточный шаг. Таким образом, происходит, с одной стороны, формирование навыка применения изученных способов действий, а с другой – подготовка к введению в будущем следующих тем.

9. Рефлексия учебной деятельности на уроке (итог урока).

На данном этапе фиксируется новое содержание, изученное на уроке, и

организуется рефлексия и самооценка учениками собственной учебной деятельности. В завершение соотносятся поставленная цель и результаты, фиксируется степень их соответствия, и намечаются дальнейшие цели деятельности.

Данная структура урока может быть представлена следующей схемой, позволяющей в наглядном виде соотнести этапы урока по ТДМ с методом рефлексивной самоорганизации.

Технология деятельностного метода «Школа 2000...» (ТДМ)

Помимо уроков открытия нового знания, в дидактической системе «Школа 2000...» имеются уроки других типов:

 уроки рефлексии, где учащиеся закрепляют свое умение применять

новые способы действий в нестандартных условиях, учатся самостоятельно

выявлять и исправлять свои ошибки, корректируют свою учебную деятельность;

 уроки обучающего контроля, на которых учащиеся учатся контролировать результаты своей учебной деятельности;

 уроки систематизации знаний, предполагающие структурирование и систематизацию знаний по изучаемым предметам.

Все уроки также строятся на основе метода рефлексивной самоорганизации, что обеспечивает возможность системного выполнения каждым ребенком всего комплекса личностных, регулятивных, познавательных и коммуникативных универсальных учебных действий, предусмотренных ФГОС.

Технология деятельностного метода обучения может использоваться в образовательном процессе на разных уровнях в зависимости от предметного содержания урока, поставленных дидактических задач и уровня освоения учителем метода рефлексивной самоорганизации: базовом, технологическом и системнотехнологическом.

Базовый уровень ТДМ включает в себя следующие шаги:

1) Мотивация к учебной деятельности.

2) Актуализация знаний.

3) Проблемное объяснение нового знания.

4) Первичное закрепление во внешней речи.

5) Самостоятельная работа с самопроверкой.

6) Включение нового знания в систему знаний и повторение.

7) Рефлексия учебной деятельности на уроке.

Структура урока базового уровня выделяет из общей структуры рефлексивной самоорганизации ту ее часть, которая представляет собой целостный элемент. Таким образом, не вступая в противоречие со структурой деятельностного метода обучения, базовый уровень ТДМ систематизирует инновационный опыт российской школы об активизации деятельности детей в процессе трансляции системы знаний. Поэтому базовый уровень ТДМ используется также как ступень перехода учителя от традиционного объяснительноиллюстративного метода к деятельностному методу.

На технологическом уровне при введении нового знания учитель начинает использовать уже целостную структуру ТДМ, однако построение самими детьми нового способа действия организуется пока еще с отсутствием существенных компонентов (этап проектирования и реализации проекта).

На системнотехнологическом уровне деятельностный метод реализуется в его полноте.

Для формирования определенных ФГОС НОО универсальных учебных действий как основы умения учиться предусмотрена возможность системного прохождения каждым учащимся основных этапов формирования любого умения, а именно:

1. Приобретение опыта выполнения УУД.

2. Мотивация и построение общего способа (алгоритма) выполнения УУД (или структуры учебной деятельности).

3. Тренинг в применении построенного алгоритма УУД, самоконтроль и коррекция.

4. Контроль.

На уроках по ТДМ «Школа 2000...» учащиеся приобретают первичный опыт выполнения УУД. На основе приобретенного опыта они строят общий способ выполнения УУД (второй этап). После этого они применяют построенный общий способ, проводят самоконтроль и, при необходимости, коррекцию своих действий (третий этап). И, наконец, по мере освоения данного УУД и умения учиться в целом проводится контроль реализации требований ФГОС (четвертый этап).

Создание информационно-образовательной среды осуществляется на основе системы дидактических принципов деятельностного метода об учения «Школа 2000...»:

1) Принцип деятельности – заключается в том, что ученик, получая знания не в готовом виде, а, добывая их сам, осознает при этом содержание и формы своей учебной деятельности, понимает и принимает систему ее норм, активно участвует в их совершенствовании, что способствует активному успешному формированию его общекультурных и деятельностных способностей, общеучебных умений.

2) Принцип непрерывности – означает преемственность между всеми ступенями и этапами обучения на уровне технологии, содержания и методик с учетом возрастных психологических особенностей развития детей.

3) Принцип целостности – предполагает формирование у учащихся обобщенного системного представления о мире (природе, обществе, самом себе, социокультурном мире и мире деятельности, о роли и месте каждой науки в системе наук, а также роли ИКТ).

4) Принцип минимакса – заключается в следующем: школа должна предложить ученику возможность освоения содержания образования на максимальном для него уровне (определяемом зоной ближайшего развития возрастной группы) и обеспечить при этом его усвоение на уровне социально безопасного минимума (федерального государственного образовательного стандарта).

5) Принцип психологической комфортности – предполагает снятие всех стрессообразующих факторов учебного процесса, создание в школе и на уроках доброжелательной атмосферы, ориентированной на реализацию идей педагогики сотрудничества, развитие диалоговых форм общения.

6) Принцип вариативности – предполагает формирование у учащихся способностей к систематическому перебору вариантов и адекватному принятию решений в ситуациях выбора.

7) Принцип творчества – означает максимальную ориентацию на творческое начало в образовательном процессе, создание условий для приобретения учащимся собственного опыта творческой деятельности.

При реализации базового уровня ТДМ принцип деятельности преобразуется в дидактический принцип активности традиционной школы.

Поскольку развитие личности человека происходит в процессе его самостоятельной деятельности, осмысления и обобщения им собственного деятельностного опыта (Л.С. Выготский), то представленная система дидактических принципов сохраняет свое значение и для организации воспитательной работы, как на уроках, так и во внеурочной деятельности.

Использование деятельностного метода обучения позволяет при изучении всех разделов данного курса организовать полноценную математическую деятельность учащихся по получению нового знания, его преобразованию и применению, включающую три основных этапа математического моделирования:

1) этап построения математической модели некоторого объекта или процесса реального мира;

2) этап изучения математической модели средствами математики;

3) этап приложения полученных результатов к реальному миру.

При построении математических моделей учащиеся приобретают опыт использования начальных математических знаний для описания объектов и процессов окружающего мира, объяснения причин явлений, оценки их количественных и пространственных отношений.

На этапе изучения математической модели учащиеся овладевают математическим языком, основами логического, алгоритмического и творческого мышления, они учатся пересчитывать, измерять, выполнять прикидку иоценку, исследовать и выявлять свойства и отношения, наглядно представлять полученные данные, записывать и выполнять алгоритмы.

Далее, на этапе приложения полученных результатов к реальному миру учащиеся приобретают начальный опыт применения математических знаний для решения учебнопознавательных и учебнопрактических задач.

Здесь они отрабатывают умение выполнять устно и письменно арифметические действия с числами и числовыми выражениями, решать текстовые задачи, распознавать и изображать геометрические фигуры, действовать по заданным алгоритмам и строить их. Дети учатся работать со схемами и таблицами, диаграммами и графиками, цепочками и совокупностями, они анализируют и интерпретируют данные, овладевают грамотной математической речью и первоначальными представлениями о компьютерной грамотности.

Поскольку этап обучения в начальной школе соответствует второму допонятийному этапу познания, освоение предметного содержания в курсе математики «Учусь учиться» организуется посредством систематизации опыта, полученного учащимися в предметных действиях, и построения ими основных понятий и методов математики на основе выделения существенного в реальных объектах.

Отбор содержания и последовательность изучения математических понятий осуществлялись на основе построенной Н.Я. Виленкиным системы начальных математических понятий, обеспечивающей преемственные связи и непрерывное развитие следующих основных содержательнометодических линий школьного курса математики с 1 по 9 класс: числовой, алгебраической, геометрической, функциональной, логической, анализа данных, текстовых задач. При этом каждая линия отражает логику и этапы формирования математического знания в процессе познания и осуществляется на основе тех

реальных источников, которые привели к их возникновению в культуре, в истории развития математического знания.

Так, числовая линия строится на основе счета предметов (элементов множества) и измерения величин. Понятия множества и величины подводят учащихся с разных сторон к понятию числа: с одной стороны, натурального числа, а с другой – положительного действительного числа. В этом находит свое отражение двойственная природа числа, а в более глубоком аспекте –двойственная природа бесконечных систем, с которыми имеет дело математика: дискретной, счетной бесконечностью и континуальной бесконечностью.

Измерение величин связывает натуральные числа с действительными, поэтому свое дальнейшее развитие в средней и старшей школе числовая линия получает как бесконечно уточняемый процесс измерения величин.

Исходя из этого, понятия множества и величины вводятся на ранних стадиях обучения с опорой на житейский опыт учащихся (при этом множества рассматриваются лишь непересекающиеся, а сам термин «множество» на первых порах заменяется более понятными для учащихся словами «группа предметов», «совокупность», «мешок»). Операции над множествами и над величинами сопоставляются между собой и служат основой изучения соответствующих операций над числами. Это позволяет раскрыть оба подхода к построению математической модели «натуральное число»: число n, с одной стороны, есть то общее свойство, которым обладают все nэлементные множества, а с другой стороны, это результат измерения длины отрезка, массы, объема и т.д., когда единица измерения укладывается в измеряемой величине n раз.

В рамках числовой линии учащиеся осваивают принципы записи и сравнения целых неотрицательных чисел, смысл и свойства арифметических действий, взаимосвязи между ними, приемы устных и письменных вычислений, прикидки, оценки и проверки результатов действий, зависимости между компонентами и результатами, способы нахождения неизвестных компонентов. С другой стороны, они знакомятся с различными величинами (длиной, площадью, объемом, временем, массой, скоростью и др.), общим принципом и единицами их измерения, учатся выполнять действия с именованными числами.

Числовая линия курса, имея свои задачи и специфику, тем не менее, тесно переплетается со всеми другими содержательно-методическими линиями. Так, при построении алгоритмов действий над числами и исследовании их свойств используются разнообразные графические модели − «треугольники и точки», прямоугольник, прямоугольный параллелепипед. Включаются в учебный процесс как объект исследования и как средство обучения такие понятия, как часть и целое, взаимодействие частей, оператор и алгоритм. Например, в 1 классе учащиеся изучают разбиение множеств (групп предметов) и величин на части, взаимосвязь целого и его частей.

Установленные закономерности становятся затем основой формирования у детей прочных вычислительных навыков и обучения их решению уравнений и текстовых задач.

Во 2 классе при изучении общего понятия операции рассматриваются вопросы: над какими объектами выполняется операция, в чем заключается операция, каков результат операции. При этом операции могут быть как абстрактными (прибавление или вычитание данного числа, умножение на данное число и т.д.), так и конкретными (разборка и сборка игрушки, приготовление еды и т.д.). При рассмотрении любых операций ставится вопрос о возможности их обращения, последовательного выполнения, перестановочности и сочетании.

Знакомство учащихся с различными видами программ − линейными, разветвленными, циклическими − не только помогает им успешнее изучить многие традиционно трудные вопросы числовой линии (например, порядок действий в выражениях, алгоритмы действий с многозначными числами), но и развивает алгоритмическое мышление, необходимое для успешного использования компьютерной техники, жизни и деятельности в информационном обществе.

Развитие алгебраической линии также неразрывно связано с числовой, во многом дополняет ее и обеспечивает лучшее понимание и усвоение изучаемого материала, а также повышает уровень обобщенности усваиваемых детьми знаний. Учащиеся записывают выражения и свойства чисел с помощью буквенной символики, что помогает им структурировать изучаемый материал, выявить сходства и различия, аналогии.

Как правило, запись общих свойств операций над множествами и величинами обгоняет соответствующие навыки учащихся в выполнении аналогичных операций над числами. Это позволяет создать для каждой из таких операций общую рамку, в которую потом, по мере введения новых классов чисел, укладываются операции над этими числами и их свойства. Тем самым дается теоретически обобщенный способ ориентации в учениях о конечныхмножествах, величинах и числах, позволяющий решать обширные классы конкретных задач, что обеспечивает качественную подготовку детей к изучению программного материала по алгебре средней школы.

Изучение геометрической линии в курсе математики начинается достаточно рано, при этом на первых порах основное внимание уделяется развитию пространственных представлений, воображения, речи и практических навыков черчения: учащиеся овладеют навыками работы с такими измерительными и чертежными инструментами, как линейка, угольник, а несколько позже − циркуль, транспортир.

Программа предусматривает знакомство с плоскими и пространственными геометрическими фигурами: квадрат, прямоугольник, треугольник, круг, куб, параллелепипед, цилиндр, пирамида, шар, конус. Разрезание фигур на части и составление новых фигур из полученных частей, черчение разверток и склеивание моделей фигур по их разверткам развивает пространственные представления детей, воображение, комбинаторные способности, формирует практические навыки и одновременно служит средством наглядной интерпретации изучаемых арифметических фактов.

В рамках геометрической линии учащиеся знакомятся также с более абстрактными понятиями точки, прямой и луча, отрезка и ломаной линии, угла и многоугольника, области и границы, окружности и круга и др., которые используются для решения разнообразных практических задач.

Запас геометрических представлений и навыков, который накоплен у учащихся к 3–4 классам, позволяет перейти к исследованию геометрических фигур и открытию их свойств. С помощью построений и измерений они выявляют различные геометрические закономерности, которые формулируют как предположение, гипотезу. Это готовит мышление учащихся и создает мотивационную основу для изучения систематического курса геометрии в старших классах.

Таким образом, геометрическая линия курса также непосредственно связана со всеми остальными линиями курса − числовой, алгебраической, логической, функциональной, анализом данных, решением текстовых задач, которые, в свою очередь, тесно переплетаются друг с другом. Достаточно серьезное внимание уделяется в данном курсе развитию логической линии при изучении арифметических, алгебраических и геометрических вопросов программы. Практически все задания курса требуют от учащихся выполнения логических операций − анализ, синтез, сравнение, обобщение, аналогия, классификация, способствуют развитию познавательных процессов − воображения, памяти, речи, логического мышления.

В рамках логической линии учащиеся осваивают математический язык, проверяют истинность высказываний, строят свои суждения и обосновывают их. У учащихся формируются начальные представления о языке множеств, различных видах высказываний, сложных высказываний с союзами «и» и «или».

Линия анализа данных целенаправленно формирует у учащихся информационную грамотность, умение самостоятельно получать информацию из наблюдений, бесед, справочников, энциклопедий, Интернетисточников и работать с полученной информацией: анализировать, систематизировать и представлять в различной форме, в том числе, в форме таблиц, диаграмм и графиков; делать прогнозы и выводы; выявлять закономерности и существенные признаки, проводить классификацию; составлять различные комбинации из заданных элементов и осуществлять перебор вариантов, выделять из них варианты, удовлетворяющие заданным условиям.

При этом в курсе предусмотрено систематическое знакомство учащихся с необходимым инструментарием осуществления этих видов деятельности с организацией информации в словарях и справочниках, способами чтения и построения диаграмм, таблиц и графиков, методами работы с текстами, построением и исполнением алгоритмов, способами систематического перебора вариантов с помощью дерева возможностей и др.

Информационные умения формируются как на уроках, так и во внеурочной проектной деятельности, кружковой работе, при создании собственных информационных объектов − презентаций, сборников задач и примеров, стенгазет и информационных листков и т.д. В ходе этой деятельности учащиеся овладевают началами компьютерной грамотности и навыками работы с компьютером, необходимыми для продолжения образования на следующей ступени обучения и для жизни. Функциональная линия строится вокруг понятия функциональной зависимости величин, которая является промежуточной моделью между реальной действительностью и общим понятием функции, и служит, таким образом, основой изучения в старших классах понятия функций. Учащиеся наблюдают за взаимосвязанным изменением различных величин, знакомятся с понятием переменной величины, и к 4 классу приобретают значительный опыт фиксирования зависимостей между величинами с помощью таблиц, диаграмм, графиков движения и простейших формул. Так, учащиеся строят и используют для решения практических задач формулы: площади прямоугольника S = a b, объема прямоугольного параллелепипеда V = a × b × c, пути s = v × t, стоимости С = а × х, работы А = w × t и др.При исследовании различных конкретных зависимостей дети выявляют и фиксируют на математическом языке их общие свойства, что создает основу для построения в старших классах общего понятия функции, понимания его смысла, осознания целесообразности и практической значимости.

Знания, полученные детьми при изучении различных разделов курса, находят практическое применение при решении текстовых задач. В рамках линии текстовых задач они овладевают различными видами математической деятельности, осознают практическое значение математических знаний, у них развиваются логическое мышление, воображение, речь.

В курсе вводятся задачи с числовыми и буквенными данными разных типов: на смысл арифметических действий, разностное и кратное сравнение («больше на (в) …», «меньше на (в) …»), на зависимости, характеризующие процессы движения (путь, скорость, время), куплипродажи (стоимость, цена, количество товара), работы (объем выполненной работы, производительность, время работы). В курс включены задачи на пропорциональные величины, одновременное равномерное движение двух объектов (навстречу друг другу, в противоположных направлениях, вдогонку, с отставанием), у учащихся формируется представление о проценте, что создает прочную базу для успешного освоения данных традиционно трудных разделов программы средней школы. Система подбора и расположения задач создает возможность для их сравнения, выявления сходства и различия, имеющихся взаимосвязей (взаимно обратные задачи, задачи одинакового вида, имеющие одинаковую математическую модель и др.). Особенностью курса является то, что после планомерной отработки небольшого числа базовых типов решения простых и составных задач учащимся предлагается широкий спектр разнообразных структур, состоящих из этих базовых элементов, но содержащих некоторую новизну и развивающих у детей умение действовать в нестандартной ситуации.

Большое значение в курсе уделяется обучению учащихся проведению самостоятельного анализа текстовых задач, сначала простых, а затем и составных. Учащиеся выявляют величины, о которых идет речь в задаче, устанавливают взаимосвязи между ними, составляют план решения. При необходимости, используются разнообразные графические модели (схемы, схематические рисунки, таблицы), которые обеспечивают наглядность и осознанность определения плана решения. Дети учатся находить различные способы решения и выбирать наиболее рациональные, давать полный ответ на вопрос задачи, самостоятельно составлять задачи, анализировать корректность формулировки задачи.

Линия текстовых задач в данном курсе строится таким образом, чтобы, с одной стороны, обеспечить прочное усвоение учащимися изучаемых методов работы с задачами, а с другой, − создать условия для их систематизации, и на этой основе раскрыть роль и значение математики в развитии общечеловеческой культуры.

Система заданий курса допускает возможность организации кружковой работы по математике во второй половине дня, индивидуальной и коллективной творческой, проектной работы, в том числе с использованием информационно-коммуникационных технологий и электронных образовательных ресурсов.

I.4. Место курса в учебном плане

Курс разработан в соответствии с базисным учебным (образовательным) планом общеобразовательных учреждений РФ. На изучение математики в каждом классе начальной школы отводится по 4 часа в неделю, всего 540 часов: в 1 классе 132 часа, а во 2, 3 и 4 классах − по 136 часов.

Реализация принципа минимакса в образовательном процессе позволяет использовать данный курс при 5 ч в неделю за счет школьного компонента, всего 675 ч: в 1 классе 165 часов, а во 2, 3 и 4 классах − по 170 часов.

II. Результаты изучения курса

Содержание курса математики обеспечивает реализацию следующих личностных, метапредметных и предметных результатов:

II.1. Личностные результаты

− Становление основ гражданской российской идентичности, уважения к своей семье и другим людям, своему Отечеству, развитие морально-этических качеств личности, адекватных полноценной математической деятельности,

− Целостное восприятие окружающего мира, начальные представления об истории развития математического знания, роли математики в системе знаний.

− Овладение начальными навыками адаптации в динамично изменяющемся мире на основе метода рефлексивной самоорганизации.

− Принятие социальной роли «ученика», осознание личностного смысла учения и интерес к изучению математики.

− Развитие самостоятельности и личной ответственности за свои поступки, способность к рефлексивной самооценке собственных действий и волевая саморегуляция.

− Освоение норм общения и коммуникативного взаимодействия, навыков сотрудничества со взрослыми и сверстниками, умение находить выходы из спорных ситуаций.

− Мотивация к работе на результат, как в исполнительской, так и в творческой деятельности.

− Установка на здоровый образ жизни, спокойное отношение к ошибке как «рабочей» ситуации, требующей коррекции; вера в себя. II.2. Метапредметные результаты

− Умение выполнять пробное учебное действие, в случае его неуспеха грамотно фиксировать свое затруднение, анализировать ситуацию, выявлять и конструктивно устранять причины затруднения.

− Освоение начальных умений проектной деятельности: постановка и сохранение целей учебной деятельности, определение наиболее эффективных способов и средств достижения результата, планирование, прогнозирование, реализация построенного проекта.

− Умение контролировать и оценивать свои учебные действия на основе выработанных критериев в соответствии с поставленной задачей и условиями ее реализации.

− Опыт использования методов решения проблем творческого и поискового характера.

− Освоение начальных форм познавательной и личностной рефлексии.

– Способность к использованию знаковосимволических средств математического языка и средств ИКТ для описания и исследования окружающего мира (представления информации, создания моделей изучаемых объектов и процессов, решения коммуникативных и познавательных задач и др.) и как базы компьютерной грамотности.

− Овладение различными способами поиска (в справочной литературе, образовательных Интернетресурсах), сбора, обработки, анализа, организации и передачи информации в соответствии с коммуникативными и познавательными задачами, готовить свое выступление и выступать с аудио, видео и графическим сопровождением.

− Формирование специфических для математики логических операций (сравнение, анализ, синтез, обобщение, классификация, аналогия, установление причинно-следственных связей, построение рассуждений, отнесение к известным понятиям), необходимых человеку для полноценного функционирования в современном обществе; развитие логического, эвристического и алгоритмического мышления.

− Овладение навыками смыслового чтения текстов.

− Освоение норм коммуникативного взаимодействия в позициях «автор», «критик», «понимающий», готовность вести диалог, признавать возможностьи право каждого иметь свое мнение, способность аргументировать свою точку зрения.

− Умение работать в паре и группе, договариваться о распределении функций в совместной деятельности, осуществлять взаимный контроль, адекватно оценивать собственное поведение и поведение окружающих; стремление не допускать конфликты, а при их возникновении – готовность конструктивно их разрешать.

− Начальные представления о сущности и особенностях математического знания, истории его развития, его обобщенного характера и роли в системе знаний.

− Освоение базовых предметных и межпредметных понятий (алгоритм, множество, классификация и др.), отражающих существенные связи и отношения между объектами и процессами различных предметных областей знания.

− Умение работать в материальной и информационной среде начального общего образования (в том числе с учебными моделями) в соответствии с содержанием учебного предмета «математика».

II.3. Предметные результаты

− Освоение опыта самостоятельной математической деятельности по получению нового знания, его преобразованию и применению для решения учебнопознавательных и учебнопрактических задач.

– Использование приобретенных математических знаний для описания и объяснения окружающих предметов, процессов, явлений, а также оценки их количественных и пространственных отношений.

– Овладение устной и письменной математической речью, основами логического, эвристического и алгоритмического мышления, пространственного воображения, счета и измерения, прикидки и оценки, наглядного представления данных и процессов (схемы, таблицы, диаграммы, графики), исполнения и построения алгоритмов.

– Умение выполнять устно и письменно арифметические действия с числами, составлять числовые и буквенные выражения, находить их значения, решать текстовые задачи, простейшие уравнения и неравенства, исполнять и строить алгоритмы, составлять и исследовать простейшие формулы, распознавать, изображать и исследовать геометрические фигуры, работать с таблицами, схемами, диаграммами и графиками, множествами и цепочками, представлять, анализировать и интерпретировать данные.

– Приобретение начального опыта применения математических знаний для решения учебнопознавательных и учебнопрактических задач.

– Приобретение первоначальных представлений о компьютерной грамотности.

– Приобретение первоначальных навыков работы на компьютере.

III. Содержание курса математики 1−4 классы

Числа и арифметические действия с ними (200 ч)

Совокупности предметов или фигур, обладающих общим свойством.

Составление совокупности по заданному свойству (признаку). Выделение части совокупности.

Сравнение совокупностей с помощью составления пар: больше, меньше, столько же, больше (меньше) на … Порядок.

Соединение совокупностей в одно целое (сложение). Удаление части совокупности (вычитание). Переместительное свойство сложения совокупностей. Связь между сложением и вычитанием совокупностей.

Число как результат счета предметов и как результат измерения величин.

Образование, название и запись чисел от 0 до 1 000 000 000 000. Порядок следования при счете. Десятичные единицы счета. Разряды и классы. Представление многозначных чисел в виде суммы разрядных слагаемых. Связь между десятичной системой записи чисел и десятичной системой мер.

Сравнение и упорядочение чисел, знаки сравнения (>, <, =, ¹).

Сложение, вычитание, умножение и деление натуральных чисел. Знаки арифметических действий (+, −, ∙ , : ). Названия компонентов и результатов арифметических действий.

Наглядное изображение натуральных чисел и действий с ними.

Таблица сложения. Таблица умножения. Взаимосвязь арифметических действий (между сложением и вычитанием, между умножением и делением). Нахождение неизвестного компонента арифметического действия. Частные случаи умножения и деления с 0 и 1. Невозможность деления на 0.

Разностное сравнение чисел (больше на..., меньше на ...). Кратное сравнение чисел (больше в ..., меньше в ...). Делители и кратные.

Связь между компонентами и результатов арифметических действий.

Свойства сложения и умножения: переместительное и сочетательное свойства сложения и умножения, распределительное свойство умножения относительно сложения и вычитания (правила умножения числа на сумму и суммы на число, числа на разность и разности на число). Правила вычитания числа из суммы и суммы из числа, деления суммы и разности на число.

Деление с остатком. Компоненты деления с остатком, взаимосвязь между ними. Алгоритм деления с остатком. Оценка и прикидка результатов арифметических действий.

Монеты и купюры.

Числовое выражение. Порядок выполнения действий в числовых выражениях со скобками и без скобок. Нахождение значения числового выражения. Использование свойств арифметических действий для рационализации вычислений (перестановка и группировка слагаемых в сумме, множителей в произведении и др.).

Алгоритмы письменного сложения, вычитания, умножения и деления многозначных чисел. Способы проверки правильности вычислений (алгоритм, обратное действие, прикидка результата, оценка достоверности, вычисление на калькуляторе).

Измерения и дроби. Недостаточность натуральных чисел для практических измерений. Потребности практических измерений как источник расширения понятия числа.

Доли. Сравнение долей. Нахождение доли числа и числа по доле.

Процент.

Дроби. Наглядное изображение дробей с помощью геометрических фигур и на числовом луче. Сравнение дробей с одинаковыми знаменателями и дробей с одинаковыми числителями. Деление и дроби. Нахождение части числа, числа по его части и части, которую одно число составляет от другого.

Нахождение процента от числа и числа по его проценту. Сложение и вычитание дробей с одинаковыми знаменателями. Правильные и неправильные дроби. Смешанные числа. Выделение целой части из неправильной дроби. Представление смешанного числа в виде неправильной дроби. Сложение и вычитание смешанных чисел (с одинаковыми знаменателями дробной части).

Текстовые задачи (130 ч)

Условие и вопрос задачи. Установление зависимости между величинами, представленными в задаче. Проведение самостоятельного анализа задачи. Построение наглядных моделей текстовых задач (схемы, таблицы, диаграммы, краткой записи и др.). Планирование хода решения задачи.

Решение текстовых задач арифметическим способом (по действиям с пояснением, по действиям с вопросами, с помощью составления выражения).

Арифметические действия с величинами при решении задач. Соотнесение полученного результата с условием задачи, оценка его правдоподобия.

Запись решения и ответа на вопрос задачи. Проверка решения задачи.

Задачи с некорректными формулировками (лишними и неполными данными, нереальными условиями). Примеры задач, решаемых разными способами.

Выявление задач, имеющих внешне различные фабулы, но одинаковое математическое решение (модель).

Простые задачи, раскрывающие смысл арифметических действий (сложение, вычитание, умножение, деление), содержащие отношения «больше (меньше) на …», «больше (меньше) в …»

Задачи, содержащие зависимость между величинами вида a = b × c:

путь − скорость − время (задачи на движение), объем выполненной работы −

производительность труда − время (задачи на работу), стоимость – цена товара − количество товара (задачи на стоимость) и др.

Классификация простых задач изученных типов.

Составные задачи на все 4 арифметические действия. Общий способ анализа и решения составной задачи.

Задачи на нахождение «задуманного числа». Задачи на нахождение

чисел по их сумме и разности.

Задачи на приведение к единице.

Задачи на определение начала, конца и продолжительности события. Задачи на нахождение доли целого и целого по его доле. Три типа задач на дроби. Задачи на нахождение процента от числа и числа по его проценту.

Задачи на одновременное движение двух объектов (навстречу друг другу, в противоположных направлениях, вдогонку, с отставанием).

Пространственные отношения.

Геометрические фигуры и величины (60 ч)

Основные пространственные отношения: выше – ниже, шире – уже, толще – тоньше, спереди – сзади, сверху – снизу, слева – справа, между и др.

Сравнение фигур по форме и размеру (визуально).

Распознавание и называние геометрических форм в окружающем мире:

круг, квадрат, треугольник, прямоугольник, куб, шар, параллелепипед, пирамида, цилиндр, конус. Представления о плоских и пространственных геометрических фигурах. Области и границы.

Составление фигур из частей и разбиение фигур на части. Равенство геометрических фигур. Конструирование фигур из палочек.

Распознавание и изображение геометрических фигур: точка, линия (кривая, прямая, замкнутая и незамкнутая), отрезок, луч, ломаная, угол, треугольник, четырехугольник, пятиугольникдлины (миллиметр, сантиметр, дециметр, метр, километр) и соотношения между ними. Периметр. Вычисление периметра многоугольника.

Площадь геометрической фигуры. Непосредственное сравнение фигур по площади. Измерение площади. Единицы площади (квадратный миллиметр, квадратный сантиметр, квадратный дециметр, квадратный метр, ар, гектар) и соотношения между ними. Площадь прямоугольника и прямоугольного треугольника. Приближенное измерение площади геометрической фигуры. Оценка площади. Измерение площади с помощью палетки.

Объем геометрической фигуры. Единицы объема (кубический миллиметр, кубический сантиметр, кубический дециметр, кубический метр) и соотношения между ними. Объем куба и прямоугольного параллелепипеда

Непосредственное сравнение углов. Измерение углов. Единица измерения углов: угловой градус. Транспортир.

Преобразование, сравнение и арифметические действия с геометрическими величинами.

Исследование свойств геометрических фигур на основе анализа результатов измерений геометрических величин. Свойство сторон прямоугольника.

Свойство углов треугольника, четырехугольника. Свойство смежных углов.

Свойство вертикальных углов и др.

Величины и зависимости между ними (50 ч)

Сравнение и упорядочение величин. Общий принцип измерения величин.

Единица измерения (мерка). Зависимость результата измерения от выбора мерки. Сложение и вычитание величин. Умножение и деление величины на число. Необходимость выбора единой мерки при сравнении, сложении и вычитании величин. Свойства величин.

Непосредственное сравнение предметов по массе. Измерение массы.

Единицы массы (грамм, килограмм, центнер, тонна) и соотношения между ними.

Непосредственное сравнение предметов по вместимости. Измерение вместимости. Единица вместимости: литр; ее связь с кубическим дециметром.

Измерение времени. Единицы времени (секунда, минута, час, сутки, год) и соотношения между ними. Определение времени по часам. Название месяцев и дней недели. Календарь.

Преобразование однородных величин и арифметические действия с ними. Доля величины (половина, треть, четверть, десятая, сотая, тысячная и др.). Процент как сотая доля величины, знак процента. Часть величины, выраженная дробью. Правильные и неправильные части величин.

Поиск закономерностей. Наблюдение зависимостей между величинами, фиксирование результатов наблюдений в речи, с помощью таблиц, формул, графиков.

Зависимости между компонентами и результатами арифметических действий.

Переменная величина. Выражение с переменной. Значение выражения с переменной.

Формула. Формулы площади и периметра прямоугольника: S = a b, P = (a + b) × 2. Формулы площади и периметра квадрата: S = a а, P = 4 ∙ a.

Формула площади прямоугольного треугольника S = (a b) : 2.

Формула объема прямоугольного параллелепипеда: V = a × b × c. Формула объема куба: V = a × а × а.

Формула пути s = v × t и ее аналоги: формула стоимости С = а × х, формула работы А = w × t и др., их обобщенная запись с помощью формулы a = b × c.

Шкалы. Числовой луч. Координатный луч. Расстояние между точками координатного луча. Равномерное движение точек по координатному лучу как модель равномерного движения реальных объектов.

Скорость сближения и скорость удаления двух объектов при равномерном одновременном движении. Формулы скорости сближения и скорости удаления: vсбл. ×= v1 + v2 и vуд. ×= v1 − v2. Формулы расстояния d между двумя равномерно движущимися объектами в момент времени t для движения навстречу друг другу (d = s0 − (v1 + v2) ∙ t), в противоположных направлениях (d = s0 + (v1 + v2) ∙ t), вдогонку (d = s0 − (v1 − v2) ∙ t), с отставанием (d = s0 − (v1 − v2) ∙ t). Формула одновременного движения s = vсбл.× tвстр.

Координатный угол. График движения.

Наблюдение зависимостей между величинами и их запись на математическом языке с помощью формул, таблиц, графиков (движения). Опыт перехода от одного способа фиксации зависимостей к другому.

Алгебраические представления (40 ч) Числовые и буквенные выражения. Вычисление значений простейших буквенных выражений при заданных значениях букв.

Равенство и неравенство.

Обобщенная запись свойств 0 и 1 с помощью буквенных формул: а > 0;

а ∙ 1 = 1 ∙ а = а; а ∙ 0 = 0 ∙ а = 0; а : 1 = а; 0 : а = 0 и др.

Обобщенная запись свойств арифметических действий с помощью буквенных формул: а + b = b + а переместительное свойство сложения, (а + b) + с = а + (b + с) − сочетательное свойство сложения, а b = b а переместительное свойство умножения, (а b) ∙ с = а ∙ (b с) − сочетательное свойство умножения, (а + b) ∙ с = а с + b с – распределительное свойство умножения (правило умножения суммы на число), (а + b) − с = (а с) + b = а + (b с) − правило вычитания числа из суммы, а − (b + с) = а b с − правило вычитания суммы из числа, (а + b) : с = а : с + b : с −правило деления суммы на число и др.

Формула деления с остатком: a = b × c + r, r < b.

Уравнение. Корень уравнения. Множество корней. Уравнения вида а + х = b, а х = b, x a = b, а × х = b, а : х = b, x : a = b (простые). Составные уравнения, сводящиеся к цепочке простых.

Решение неравенства на множестве целых неотрицательных чисел. Множество решений неравенства. Строгое и нестрогое неравенство. Двойное неравенство.

Математический язык и элементы логики (20 ч)

Знакомство с символами математического языка, их использование для построения математических высказываний. Определение истинности и ложности высказываний.

Построение простейших высказываний с помощью логических связок  и слов «... и/или ...», «если ..., то ...», «верно/неверно, что ...», «каждый», «все», «найдется», «не».

Построение новых способов действия и способов решения текстовых задач. Знакомство со способами решения задач логического характера.

Множество. Элемент множества. Задание множества перечислением его элементов и свойством. Пустое множество и его обозначение. Равные множества. Диаграмма Эйлера − Венна.

Подмножество. Знаки Ì и Ë . Пересечение множеств. Свойства пересечения множеств. Объединение множеств. Свойства объединения множеств.

Работа с информацией и анализ данных (40 ч)

Основные свойства предметов: цвет, форма, размер, материал, назначение, расположение, количество. Сравнение предметов и совокупностей предметов по свойствам.

Операция. Объект операции. Результат операции. Операции над предметами, фигурами, числами. Прямые и обратные операции. Отыскание неизвестных: объекта операции, выполняемой операции, результата  операции. Программа действий. Алгоритм. Линейные, разветвленные и циклические алгоритмы. Составление, запись и выполнение алгоритмов различных видов. Составление плана (алгоритма) поиска информации.

Сбор информации, связанной с пересчетом предметов, измерением величин;

фиксирование, анализ полученной информации, представление в разных формах.

Составление последовательности (цепочки) предметов, чисел, фигур и др. по заданному правилу.

Чтение и заполнение таблицы. Анализ и интерпретация данных таблицы.

Классификация элементов множества по свойству. Упорядочение информации.

Работа с текстом: проверка понимания; выделение главной мысли, существенных замечаний и иллюстрирующих их примеров; конспектирование.

Упорядоченный перебор вариантов. Сети линий. Пути. Дерево возможностей.

Круговые, столбчатые и линейные диаграммы: чтение, интерпретация данных, построение.

Обобщение и систематизация знаний. Портфолио ученика. 


1 класс

Числа и арифметические действия с ними (70 ч)

Группы предметов или фигур, обладающие общим свойством. Составление группы предметов по заданному свойству (признаку). Выделение части группы.

Сравнение групп предметов с помощью составления пар: больше, меньше, столько же, больше (меньше) на … Порядок.

Соединение групп предметов в одно целое (сложение). Удаление части группы предметов (вычитание). Переместительное свойство сложения групп предметов. Связь между сложением и вычитанием групп предметов.

Аналогия сравнения, сложения и вычитания групп предметов со сложением и вычитанием величин.

Число как результат счета предметов и как результат измерения величин.

Названия, последовательность и обозначение чисел от 1 до 9. Наглядное изображение чисел совокупностями точек, костями домино, точками на числовом отрезке и т.д. Предыдущее и последующее число. Количественный и порядковый счет. Чтение, запись и сравнение чисел с помощью знаков =, >, <.

Сложение и вычитание чисел. Знаки сложения и вычитания. Название компонентов сложения и вычитания. Наглядное изображение сложения и вычитания с помощью групп предметов и на числовом отрезке. Связь между сложением и вычитанием. Зависимость результатов сложения и вычитания от изменения компонентов. Разностное сравнение чисел (больше на..., меньше на ...). Нахождение неизвестного слагаемого, уменьшаемого, вычитаемого.

Состав чисел от 1 до 9. Сложение и вычитание в пределах 9. Таблица сложения в пределах 9 («треугольная»).

Римские цифры. Алфавитная нумерация. «Волшебные» цифры.

Число и цифра 0. Сравнение, сложение и вычитание с числом 0. Число 10, его обозначение, место в числовом ряду, состав. Сложение и вычитание в пределах 10.

Монеты 1 к., 5 к, 10 к., 1 р., 2 р., 5 р., 10 р.

Укрупнение единиц счета и измерения. Счет десятками. Наглядное изображение десятков с помощью треугольников. Чтение, запись, сравнение, сложение и вычитание «круглых десятков» (чисел с нулями на конце, выражающих целое число десятков).

Счет десятками и единицами. Наглядное изображение двузначных чисел с помощью треугольников и точек. Запись и чтение двузначных чисел, представление их в виде суммы десятков и единиц. Сравнение двузначных чисел. Сложение и вычитание двузначных чисел без перехода через разряд. Аналогия между десятичной системой записи чисел и десятичной системой мер.

Таблица сложения однозначных чисел в пределах 20 («квадратная»).

Сложение и вычитание в пределах 20 с переходом через десяток.

Работа с текстовыми задачами (20 ч)

Устное решение простых задач на смысл сложения и вычитания приизучении чисел от 1 до 9.

Задача, условие и вопрос задачи. Построение наглядных моделей текстовых задач (схемы, схематические рисунки и др.).

Простые (в одно действие) задачи на смысл сложения и вычитания.

Задачи на разностное сравнение (содержащие отношения «больше (меньше) на…»). Задачи, обратные данным. Составление выражений к текстовымзадачам.

Задачи с некорректными формулировками (лишними и неполными данными, нереальными условиями).

Составные задачи на сложение, вычитание и разностное сравнение в 2−4 действия. Анализ задачи и планирование хода ее решения. Соотнесение полученного результата с условием задачи, оценка его правдоподобия. Запись решения и ответа на вопрос задачи. Арифметические действия с величинами при решении задач. 

Геометрические фигуры и величины (14 ч)

Основные пространственные отношения: выше – ниже, шире – уже, толще – тоньше, спереди – сзади, сверху – снизу, слева – справа, между и др.

Сравнение фигур по форме и размеру (визуально).

Распознавание и называние геометрических форм в окружающем мире: круг, квадрат, треугольник, прямоугольник, куб, шар, параллелепипед, пирамида, цилиндр, конус. Представления о плоских и пространственных геометрических фигурах.

Составление фигур из частей и разбиение фигур на части. Конструирование фигур из палочек.

Точки и линии (кривые, прямые, замкнутые и незамкнутые). Области и границы. Ломаная. Треугольник, четырехугольник, многоугольник, его вершины и стороны.

Отрезок и его обозначение. Измерение длины отрезка. Единицы длины: сантиметр, дециметр; соотношение между ними. Построение отрезка заданной длины с помощью линейки.

Составление фигур из частей и разбиение фигур на части.

Объединение и пересечение геометрических фигур.

Величины и зависимости между ними (10 ч)

Сравнение и упорядочение величин. Общий принцип измерения величин. Единица измерения (мерка). Зависимость результата измерения от выбора мерки. Необходимость выбора единой мерки при сравнении, сложении и вычитании величин. Свойства величин.

Измерение массы. Единица массы: килограмм.

Измерение вместимости. Единица вместимости: литр.

Поиск закономерностей. Наблюдение зависимостей между компонентами и результатами арифметических действий, их фиксирование в речи.

Числовой отрезок.

Алгебраические представления (14 ч)

Чтение и запись числовых и буквенных выражений 1 – 2 действия без скобок. Равенство и неравенство, их запись с помощью знаков >, <, = .

Уравнения вида а + х = b, а х = b, x a = b, а × х = b, решаемые на основе взаимосвязи между частью и целым. Запись переместительного свойства сложения с помощью буквенной формулы: а + б = б + а.

Запись взаимосвязи между сложением и вычитанием с помощью буквенных равенств вида: а + б = с, б + а = с, с − а = б.

Математический язык и элементы логики (2 ч)

Знакомство с символами математического языка: цифрами, буквами, знаками сравнения, сложения и вычитания, их использование для по строения высказываний. Определение истинности и ложности высказываний.

Построение моделей текстовых задач.

Знакомство с задачами логического характера и способами их решения.

Работа с информацией и анализ данных (2 ч)

Основные свойства предметов: цвет, форма, размер, материал, назначение, расположение, количество. Сравнение предметов и групп предметов по свойствам.

Таблица, строка и столбец таблицы. Чтение и заполнение таблицы. Поиск закономерности размещения объектов (чисел, фигур, символов) в таблице.

Сбор и представление информации о единицах измерения величин, которые использовались в древности на Руси и в других странах.

Обобщение и систематизация знаний, изученных в 1 классе.

Портфолио ученика 1 класса.

Тематическое планирование уроков математики в 1 классе

(4 ч в неделю, 136 часов)

п/п

№ урока

Тема урока

Кол-во часов

Дата

Часть 1

1.

1, 2, 3.

Свойства предметов

3

2.

4.

Большие и маленькие

1

3.

5,6.

Совокупность предметов, обладающих одним признаком

2

4.

7,8.

Самостоятельная работа к урокам 1-6,№1

Сравнение групп предметов    

2

5.

9,10.

Самостоятельная работа к урокам 7-8, №2

Сложение. Компоненты сложения

2

6.

11,12.

Самостоятельная работа к урокам 9-10, №3

Вычитание. Компоненты вычитания

2

7.

13,14.

Самостоятельная работа к урокам 11-12, №4

Пространственно-временные отношения. Выше, ниже

2

8.

15.

Порядок

1

9.

Контрольная работа № 1 к урокам  1-15

1

10.

16.

Один - много. Сложение и вычитание.

1

11.

17.

Число 1. Цифра 1

1

12.

18.

Число 2. Цифра 2

1

13.

19.

Число 3. Цифра 3

1

14.

20,21.

Числа 1-3

2

15.

22.

Самостоятельная работа к урокам 16-21, №5

Число 4. Цифра 4

1

16.

23.

Число 4. Цифра 4

1

17.

24,25.

Числовой отрезок

2

18.

26.

Самостоятельная работа к урокам 22-25, №6

Число 5. Цифра 5

1

19.

27.

Сложение и вычитание в пределах 5. Пятиугольник

1

20.

28.

Столько же

1

21.

29.

Столько же. Равенство и неравенство

1

22.

30.

Числа 1-5

1

23.

31,32.

Сравнение чисел с помощью знаков  > и <

2

24.

33.

Самостоятельная работа к урокам 26-32, №7

Число 6. Цифра 6

1

25.

34.

Числа 1-6

1

26.

35.

Точки и линии

1

27.

36.

Компоненты сложения

1

28.

37.

Области и границы

1

29.

38.

Компоненты вычитания

1

30.

39

Закрепление пройденного

Самостоятельная работа к урокам 33-38, №8

1

31.

40

Математическая игра

1

32.

41

Контрольная работа  №2 к урокам  16-38

1

Часть 2

1.

1.

Отрезок и его части

1

2.

2.

Число 7. Цифра 7

1

3.

3.

Ломаная линия. Многоугольник

Самостоятельная работа к урокам 1-3, №9

1

4.

4.

Выражения

1

5.

5,6.

Выражения

Самостоятельная работа к урокам 4-6, №10

2

6.

7.

Число 8. Цифра 8

1

7.

8,9.

Числа 1-8

Самостоятельная работа к урокам 7-9, №11

2

8.

10.

Число 9. Цифра 9

1

9.

11.

Таблицы сложения

1

10.

12.

Компоненты сложения

1

11.

13.

Компоненты вычитания

Самостоятельная работа к урокам 10-13, №12

1

12.

Закрепление пройденного

1

13.

Контрольная работа №3 к урокам  1-13

1

14.

14,15.

Части фигур

2

15.

16,17.

Число 0. Цифра 0

2

16.

18.

Кубик Рубика

Самостоятельная работа к урокам 14-18, №13

1

17.

19,20.

Равные фигуры

2

18.

21,22.

Волшебные цифры

Самостоятельная работа к урокам 19-22, №14

2

19.

23-26.

Задачи      

4

20.

Решение задач

Самостоятельная работа к урокам 23-26, №15

1

21.

27.

Сравнение чисел

1

22.

28-31.

Задачи на сравнение

4

23.

32.

Повторение

Самостоятельная работа к урокам 27-32, 16    

1

24.

Математические игры

1

25.

Контрольная работа №4 к урокам  14-32

1

Часть 3

1.

1,2.

Величины. Длина

2

2.

3.

Длина

Самостоятельная работа к урокам 1-3, №17

1

3.

4,5.

Масса

2

4.

6.

Объем

1

5.

7-9.

Свойства величин

2

6.

Повторение

Самостоятельная работа к урокам 4-9, №18

1

7.

10.

Величины. Решение задач

1

8.

11-13.

Уравнения

Самостоятельная работа к урокам 10-13, №19   

3

9.

14,15.

Уравнения

Самостоятельная работа к урокам 14-15 , №20  

2

10.

16,17.

Уравнения

2

11.

Повторение

Самостоятельная работа к урокам 16-17, № 21   

1

12.

Контрольная работа №5 к урокам  1-17

1

13.

18,19.

Единицы счета

2

14.

20-22.

Число 10

2

15.

23.

Решение задач

1

16.

Самостоятельная работа к урокам 18-23, №22   

1

17.

24,25.

Счет десятками. Круглые числа

2

18.

26.

Самостоятельная работа к урокам 24-25, №23   

Круглые числа

1

19.

27.

Дециметр

1

20.

28.

Счет десятками и единицами

1

21.

Закрепление пройденного

Самостоятельная работа к урокам 26-28 , №24

1

22.

Контрольная работа №6 к урокам  18-28

1

23.

29-31.

Названия чисел до двадцати

3

24.

32,33.

Нумерация двузначных чисел

Самостоятельная работа к урокам 29-33, №25  

2

25.

34.

Сравнение двузначных чисел

1

26.

35,36.

Сложение и вычитание двузначных чисел

2

27.

Закрепление пройденного

Самостоятельная работа к урокам 34-36, №26  

1

28.

37-39.

Сложение и вычитание двузначных чисел

Самостоятельная работа к урокам 37-39 , №27

3

29.

40-43.

Таблица сложения

4

30.

44,45.

Таблица сложения

Самостоятельная работа к урокам 44-45, №28

2

31.

Повторение

Контрольная работа  №7 к урокам  30-48

1

32.

Повторение

1

33.

Итоговая контрольная работа за 1 класс(№8)

1

34.

Повторение

2

Основные требования к знаниям, умениям и навыкам учащихся к концу первого года обучения

  •  Уметь в простейших случаях продолжить заданную закономерность, найти нарушение закономерности.
  •  Уметь объединять совокупности предметов в одно целое, выделять часть совокупности, сравнивать совокупности с помощью составления пар.
  •  Знать последовательность чисел от 1 до 100, уметь читать, записывать и сравнивать эти числа, строить их графические модели.
  •  Знать таблицу сложения однозначных чисел и соответствующих случаев вычитания (на уровне автоматизированного навыка).
  •  Уметь выполнять устное сложение и вычитание чисел в пределах 100 без перехода через разряд.
  •  Уметь практически измерять величины — длину, массу, объем — различными мерками (шаг, локоть, стакан и т. д.). Знать общепринятые единицы измерения этих величин: сантиметр, дециметр, килограмм, литр.
  •  Уметь решать уравнения вида а + х = b, а — х = b, х — а = b.
  •  Уметь решать простые задачи на сложение и вычитание и разностное сравнение чисел.
  •  Уметь распознавать простейшие геометрические фигуры: треугольник, квадрат, прямоугольник, круг, шар, куб.

Учебно-методическая литература для учителя

Автор, год издания

Название пособий

Вид пособия

1.

Л.Г.Петерсон., И.Г.Липатникова.

«Устные упражнения на уроках математики 1 класс»

– М.: Ювента, 2011

Методическое пособие

методическое

2.

Л.Г.Петерсон. Методические рекомендации для учителя – М.: Ювента, 2011 – 188 с.

Методические рекомендации

методические

3.

Программа  «Учусь учиться»

Л.Г.Петерсон

Сборник программ

Сборник программ

4.

Электронное приложение к учебнику математики

Л.Г. Петерсон, В.А. Петерсон

Электронное приложение

5.

Интерактивный тренажер

по математике Л.Г.Петерсон

Интерактивный тренажер

6.

Демонстрационное пособие «Учусь учиться»

Л.Г. Петерсон  

Демонстрационное пособие

7.

Оценка достижения планируемых результатов в начальной школе [Текст]: система заданий. В 2-х ч. Ч.1. / М.Ю. Демидова  [ и др.]; под ред. Г.С. Ковалевой, О.Б. Логиновой. - 2 – е изд. – М.: Просвещение, 2010. – 215 с. – (Стандарты второго поколения)

Пособие для учителя

8.

Как проектировать универсальные учебные действия в начальной школе [Текст]: от действия к мысли : пособие для учителя / А.Г. Асмолов [ и др.]; под ред. А.Г. Асмолова. -2 –е изд. – М.: Просвещение, 2010. – 152 с. – (Стандарты второго поколения)

Пособие для учителя

Учебная литература для учащихся

Автор, год издания

Название пособий

Вид пособия

1

Л.Г.Петерсон "Математика"  Учебник  в 3-х ч.

1 кл. – М.: Ювента, 2010.

«Математика»

Учебник для 1 класса

2

 Л.Г.Петерсон «Самостоятельные и контрольные работы» к учебнику "Математика",1 кл. – М.: Ювента, 2010.

Самостоятельные и контрольные работы

Пособие по математике

3.

Л.Г.Петерсон, М.А.Кубышева «Построй свою математику»

Учебное пособие

пособие




1. НАЛОГОВЫХ АГЕНТОВ Плательщики Налоговыми агентами по НДС признаются лица на которых в соответствии
2. Несомненно это было одной из причин по которым он чувствовал себя несколько отчужденным в современной соци
3. 1 Мета роботи- 1 ознайомити студентів з існуючим асортиментом палив для автомобілів; 2 навчити студен
4. Структура семьи Cемья первичный и важнейший институт общества благодаря тем функциям которые она реализ
5. Лекция 7 Регуляция транскрипции у эукариот Общие принципы- 1
6. РЕФЕРАТ дисертації на здобуття наукового ступеня кандидата медичних наук Вінниця ~ Дисер
7. Введение В ряду актуальных задач науки и техники важную роль играет разработка аналитических метод
8. ЭПС встречается практически у всех эукариот.
9. реферату- Життя Івана СошенкоРозділ- Література українська Життя Івана Сошенко Той самий Соха АНТИПОД Г
10. тема принципов взглядов ценностей идеалов и убеждения опредх как отноше к действити общее понимание мир