Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Сибирский государственный университет телекоммуникаций и информатики Уральский технический институт с1

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 27.11.2024

Министерство информационных технологий и связи РФ

Федеральное агентство связи

ГОУ ВПО «Сибирский государственный университет телекоммуникаций и информатики»

Уральский технический институт связи и информатики(филиал)

Визуализация численных методов.

Решение обыкновенных дифференциальных уравнений.

Выполнил: студент гр. МЕ-72

Кохленко И. В.

Проверил: Минина Е.Е.

Екатеринбург

2008г.


Содержание


Введение

Постановка задачи и математическая модель.

В работе необходимо решить задачу Коши для дифференциального уравнения 1-ого порядка на отрезке [x0, xk]  с шагом h  и начальным условием            y (x0 )=y0

Дано дифференциальное уравнение: (y2*2x*y)dx+x2dx=0

Начальные условия: x0=1, xk=2, h=0.1, y0=0.2

Общее решение:  y=x2/(c+x)

Методы решения: метод Рунге-Кутта и метод Эйлера модифицированный


Описание численных методов (применительно к конкретной задаче)

Метод Рунге-Кутта 4-го порядка

Пусть дано дифференциальное уравнение первого порядка

y’= f(x,y)

c начальным условием

y(x0)=y0

выберем шаг h и введем обозначения:

xi = x0 +i h и yi = y(xi ), где i=0,1,2… 

Согласно методу Рунге-Кутта четвертого порядка, последовательность значения yi  искомой функции y определяется по формуле:

yi+1 = yi +∆ yi

где

∆ yi= 1/6* ( k1+2k2+2k3+k4 ), i=0,1,2…

а числа k1 ω , k2 ω, k3 ω , k4 ω на каждом шаге вычисляются по формулам:

k1= h * f ( x1, y1 )

k2= h * f ( x1+h/2, y1+ k1/2 )

k3= h * f ( x1+h/2, y1+ k2/2 )

k4= h * f ( x1+h, y1+k3 )

Метод Рунге-Кутта легко программируется и обладает значительной точностью и устойчивостью для широкого круга задач.

Метод Рунге-Кутта 4 порядка
Метод Эйлера модифицированный

Этот метод часто используют для уменьшения погрешности вычислений.

Пусть дано дифференциальное уравнение первого порядка

y’= f(x,y)

с начальным условием

y(x0)=y0

выберем шаг h и введем обозначения:

xi = x0 +i h и yi = y(xi ), где i=0,1,2… 

xi узлы сетки,

yi значения интегральной функции в узлах

При использовании модифицированного метода Эйлера шаг h делится на два отрезка.

Метод Эйлера модифицированный

Блок-схемы программ и основных подпрограмм

Для решения задачи и составления программы составим основные блок-схемы, которые приведены ниже.

  1.  Подпрограмма метода Эйлера модифицированного

 

 


2. Подпрограмма метода Рунге-Кутта 4 порядка

3. Алгоритм функции

 

 


4. Подпрограмма общего решения функции и поиска
max и min x и y.


5. Алгоритм программы



Решение задачи в
Mahtcad


 



End

α1

α

ε

ε1

xi+1

xi

h

h/2

В

С

А

О

y=y(x)

x

y

em(i)<miny

Miny=em(i)

End

(i) = Round(x0 + (i * h), 3)

o(i) = Round(3 * (x(i) - 1) / x(i), 3)

If o(i) > maxy Then maxy = o(i)

If o(i) < miny Then miny = o(i)

i = 1, …, n

ReDim x(n + 1)

ReDim o(n + 1)

maxy = y0

miny = y0

maxx = x0

minx = x0

Obchee

End

f=b/a*(2-b/a)

f (a,b)

x(i) = x0 + i * h

k1 = h * f(x, rk )

k2 = h * f(x + (h / 2), rk  + (k1 / 2))

k3 = h * f(x + (h / 2), rk + (k2 / 2))

k4 = h * f(x + h, rk  + k3)

k = (k1 + 2 * k2 + 2 * k3 + k4) / 6

rk (i + 1) = rk (i) + k

i = 1, …, n-1

h=(xk-x0)/n

RungeKutt (x0,xk,y0,n,rk)

End

x = x0 + i * h

em(i + 1) = em(i) + h * f(x + h / 2, em(i) + h / 2 * f(x, em(i))

i = 1, …, n-1

h=(xk-x0)/n

EilerM(x0,xk,y0,n,em)

em(i)>maxy

C=(x^2/y)-x

n=(xk-x0)/h

Start

EilerM

RungeKutt

Obchee

x=x0+i*h

i=0,..,n-1

x0,xk,y0,h

Maxy=em(i)

Label 1

Label 2

Label 3

Label 4

Label 5

Label 6

Text1

Text2

Text3

Text4

Command1

Command2

Picture1

Label7

Label9

Label11

Label8

Label10

Label12




1. реферат дисертації на здобуття наукового ступеня кандидата психологічних наук Харків ~7 Дисертацією.html
2. Описание технологии варианта стрижки «Ритм» с окрашиванием волос красителями фирмы «Schwarzkopf» с последующей современной укладкой
3. жінкою живого блюзу
4. Под действием этой силы электрон имеющий отрицательный заряд перемещается в направлении обратном напра
5. тематичних наук Київ ~ Дисертацією є рукопис Роботу виконано на кафедрі оптик
6. Мартин Бубер
7. з Проблемы социальной защиты населения пострадавшего от аварии на ЧАЭС По своим масштабам и нанесенно
8. 1996 N 2ФЗ от 17.12.1999 N 212ФЗ от 30.1
9. это мышца подчиняющаяся интересам дыхания
10. тема команд VR- команди маніпуляцій з битами
11. Контрольная работа- Проект квалификационной характеристики главного бухгалтера производственного предприятия
12. Тема- Принципы уголовной политики государства Выполнил- студентк 744.html
13. Тема- Учет затрат и выхода продукции животноводства и исчисление ее себестоимости
14. Концепт город в цикле рассказов ДжДжойса Дублинцы
15. ТА СЕР 11 ПРАВО 1997
16. 12 Анна когда накручивают голоса много страниц ба
17. 0413 Телефон горячей линии 8 800 100 97 24 7 920 694 20 11
18. Святые помощники
19. ВР ОВУ в 1997 г число 46 с
20. тема знаний предназначенная для решения целого ряда взаимосвязанных проблем возникающих и в естественно на