Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

Подписываем
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Предоплата всего
Подписываем
Основные функции сенсорных систем:
1) обнаружение сигнала;
2) различение сигнала;
3) передача и преобразование;
4) кодирование;
5) детектирование признаков;
6) опознание образов.
Обнаружение и первичное различение сигналов обеспечивается рецепторами, а детектирование и опознание сигналов нейронами коры больших полушарий.
Передачу, преобразование и кодирование сигналов осуществляют нейроны всех слоев сенсорных систем.
Обнаружение сигналов. Оно начинается в рецепторе это специализированная клетка, эволюционно приспособленная к восприятию раздражителя определенной модальности из внешней или внутренней среды и преобразованию (кодированию) его из физической или химической аналоговой формы в форму бинарного нервного возбуждения (ПД).
Классификация рецепторов.
По специализации к восприятию определенного вида информации различают:
В зависимости от локализации все рецепторы подразделяются на:
1. внешние (экстерорецепторы) и
2. внутренние (интерорецепторы).
К экстерорецепторам относятся слуховые, зрительные, обонятельные, вкусовые, осязательные.
К интерорецепторам относятся вестибуло- и проприорецепторы (рецепторы опорно-двигательного аппарата), а также висцерорецепторы (сигнализирующие о состоянии внутренних органов).
По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые, тактильные).
В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы могут быть разделены на:
Все рецепторы изначально делятся на:
1. первично-чувствующие и
2. вторично-чувствующие.
К первично-чувствующим относятся рецепторы обоняния, тактильные рецепторы и проприорецепторы. Они характеризуются тем, что преобразование энергии раздражения в энергию нервного импульса происходит у них в первом нейроне сенсорной системы.
К вторично-чувствующим относятся рецепторы вкуса, зрения, слуха, вестибулорецепторы. У них между раздражителем и первым нейроном находится высоко специализированная рецепторная клетка. При этом, первый нейрон возбуждается не непосредственно, а опосредованно через рецепторную (не нервную) клетку.
Общие механизмы возбуждения рецепторов.
При действии стимула на рецепторную клетку происходит преобразование энергии внешнего раздражения в рецепторный сигнал, или трансдукция сенсорного сигнала. Этот процесс включает в себя три основных этапа:
1) взаимодействие стимула, т. е. молекулы пахучего или вкусового вещества (обоняние, вкус), кванта света (зрение) или механической силы (слух, осязание) с рецепторными белковыми молекулами, которые находятся в составе клеточной мембраны рецепторной клетки;
2) возникновение внутриклеточных процессов усиления и передачи сенсорного стимула в пределах рецепторной клетки; и
3) открытие находящихся в мембране рецептора ионных каналов, через которые начинает течь ионный ток, что приводит к деполяризации клеточной мембраны рецепторной клетки и возникновению так называемого рецепторного потенциала.
Рецепторный потенциал это изменение величины мембранного потенциала, возникающее в рецепторе при действии адекватного раздражителя вследствие изменения ионной проницаемости мембраны рецептора и градуально зависящее от интенсивности стимула.
Под действием стимула белковые молекулы белково-липидного слоя мембраны рецептора изменяют свою конфигурацию, ионные каналы открываются и проводимость мембраны для натрия повышается, возникает локальный ответ или рецепторный потенциал. Когда рецепторный потенциал достигает порогового значения, возникает нервный импульс в виде потенциала действия распространяющееся возбуждение.
Рецепторный потенциал подчиняется следующим законам:
Вторичные рецепторы отличаются от первичных рецепторов механизмом трансформации стимула в нервную активность.
Во вторично-чувствующих рецепторах высокоспециализированная рецепторная клетка связана с окончаниями сенсорного нейрона синаптически. Поэтому, изменение электрического рецепторного потенциала этой клетки под воздействием раздражителя приводит, к выделению квантов медиатора из пресинаптического окончания рецепторной клетки. Этот медиатор (например, ацетилхолин), воздействуя на постсинаптическую мембрану окончания первого нейрона, изменяет ее поляризацию и на ней возникает ВПСП. Этот ВПСП и называют генераторным потенциалом, так как он в дальнейшем электротонически вызывает генерацию импульсного бинарного ответа в виде потенциала действия.
В первичных рецепторах рецепторный и генераторный потенциалы не имеют различий и фактически идентичны.
Итак, преобразование энергии внешнего стимула кодирование информации и передача информации в сенсорные ядра мозга обеспечивается двумя функционально различными процессами:
1. градуальными аналоговыми рецепторными или генераторными потенциалами, подчиняющимися силовым законам и
2. бинарным потенциалом действия (импульсом), следующим закону “все или ничего”.
Абсолютную чувствительность сенсорной системы измеряют порогом реакции. Чувствительность и порог обратные понятия: чем выше порог, тем ниже чувствительность, и наоборот.
Обычно принимают за пороговую такую силу стимула, вероятность восприятия которого равна 0,5 или 0,75. Более низкие значения интенсивности считаются подпороговыми, а более высокие надпороговыми.
Чувствительность рецепторных элементов к адекватным раздражителям, к восприятию которых они эволюционно приспособлены, предельно высока. Так, обонятельный рецептор может возбудиться при действии одиночной молекулы пахучего вещества, фоторецептор одиночным квантом света. Чувствительность слуховых рецепторов также предельна: если бы она была выше, мы слышали бы постоянный шум из-за теплового движения молекул.
Рецепторы могут реагировать и на неадекватнае раздражители, но при этом сила последних должна быть в 1000 раз больше чем адекватных.
Различение сигналов - это способность системы анализатора определять различия в свойствах одновременно или последовательно действующих раздражителей. Этот процесс различения сигналов начинается в рецепторах и продолжается в нейронном аппарате всей сенсорной системы. Он характеризует то минимальное различие между стимулами, которое сенсорная система может заметить (дифференциальный, или разностный, порог).
Порог различения интенсивности раздражителя практически всегда выше ранее действовавшего раздражения на определенную долю (закон Вебера). Так, усиление давления на кожу руки ощущается, если увеличить груз на 3% (к 100-граммовой гирьке надо добавить 3 г, а к 200-граммовой 6 г). Эта зависимость выражается формулой: дельта I / I = const,
где I сила раздражения,
дельта I ощущаемый прирост (порог различения),
const постоянная величина (константа).
Зависимость силы ощущения от силы раздражения (закон ВебераФехнера) выражается формулой:
E = a ∙ log I + b,
где Е величина ощущения,
I сила раздражения,
а и b константы, различные для разных модальностей стимулов.
Согласно этой формуле, ощущение увеличивается пропорционально логарифму интенсивности раздражения.
Пороги пространственного и временного различения раздражителей.
Процесс пространственного различения основан на распределении возбуждения как в слое рецепторов так и в нейронных слоях. Так, если два раздражителя возбудили два соседних рецептора, то различение этих раздражителей невозможно и они будут восприняты как единое целое. Для раздельного восприятия двух и более раздражений необходимо, чтобы между двумя возбужденными рецепторами находился хотя бы один невозбужденный.
Для временного различения двух раздражений необходимо, чтобы вызванные ими нервные процессы не сливались во времени и чтобы сигнал, вызванный вторым стимулом, не попадал в рефрактерный период от предыдущего раздражения.
Кодирование информации в анализаторах.
Кодированием называют совершаемое по определенным правилам преобразование информации в условную форму код. В сенсорной системе сигналы кодируются двоичным кодом, т. е. наличием или отсутствием электрического импульса в тот или иной момент времени. Такой способ кодирования крайне прост и устойчив к помехам, но имеет малую скорость передачи. Информация о раздражении и его параметрах передается в виде отдельных импульсов, а также групп или «пачек» импульсов («залпов» импульсов).
Амплитуда, длительность и форма каждого импульса одинаковы, но число импульсов в пачке, частота их следования, длительность пачек и интервалов между ними, а также временной «рисунок» пачки различны и зависят от характеристик стимула. Сенсорная информация кодируется также числом одновременно возбужденных нейронов, а также местом возбуждения в нейронном слое.
Особенности кодирования в сенсорных системах.
1. Первая особенность это то, что в сенсорных системах после кодирования первичного сигнала, декодирования его в исходную первичную аналоговую форму не происходит.
2. Вторая особенность нервного кодирования наличие множественности кодов и их перекрытие между собой.
Так, для одного и того же свойства сигнала (например, его интенсивности) сенсорная система использует несколько кодов:
1. частотой и числом импульсов в пачке,
2. числом возбужденных нейронов и их локализацией в слое.
В коре большого мозга сигналы кодируются:
1. последовательностью включения параллельно работающих нейронных каналов,
2. синхронностью ритмических импульсных разрядов и изменением их числа.
В коре используется также принцип позиционного кодирования. Оно заключается в том, что какой-то признак раздражителя вызывает возбуждение определенного нейрона или небольшой группы нейронов, расположенных в определенном месте нейронного слоя.
Например, возбуждение небольшой локальной группы нейронов зрительной области коры означает, что в определенной части поля зрения появилась световая полоска определенного размера и ориентации.
Для периферических отделов сенсорной системы типично временное кодирование признаков раздражителя, а на высших уровнях происходит переход преимущественно к пространственному (в основном позиционному) коду.
Детектирование сигналов.
Это избирательное выделение сенсорным нейроном того или иного признака раздражителя, имеющего поведенческое значение. Такой анализ осуществляют специальные нейроны-детекторы, избирательно реагирующие лишь на определенные параметры стимула.
Так, типичный нейрон зрительной области коры отвечает разрядом лишь на одну определенную ориентацию темной или светлой полоски, расположенной в определенной части поля зрения. При других наклонах той же полоски ответят другие нейроны. В высших отделах сенсорной системы сконцентрированы детекторы сложных признаков и целых образов.
Примером могут служить детекторы лица, найденные недавно в нижневисочной области коры обезьян (предсказанные много лет назад, они были названы «детекторы моей бабушки»).
Опознание образов.
Это конечная и наиболее сложная операция сенсорной системы. Она заключается в отнесении образа к тому или иному классу объектов, с которыми ранее встречался организм, т. е. в классификации образов. Синтезируя сигналы от нейронов-детекторов, высший отдел сенсорной системы формирует «образ» раздражителя и сравнивает его с множеством образов, хранящихся в памяти. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм. В результате этого происходит восприятие, т. е. мы осознаем, чье лицо видим перед собой, кого слышим, какой запах чувствуем.
Опознание часто происходит независимо от изменчивости сигнала. Мы надежно опознаем, например, предметы при различной их освещенности, окраске, размере, ракурсе, ориентации и положении в поле зрения. Это означает, что сенсорная система формирует независимый от изменений ряда признаков сигнала (инвариантный) сенсорный образ.
Механизмы переработки информации в сенсорной системе
Переработку информации в сенсорной системе осуществляют процессы возбудительного и тормозного межнейронного взаимодействия. Возбудительное взаимодействие заключается в том, что аксон каждого нейрона, приходя в вышележащий слой сенсорной системы, контактирует с несколькими нейронами, каждый из которых получает сигналы от нескольких клеток предыдущего слоя.
Совокупность рецепторов, сигналы которых поступают на данный нейрон, называют его рецептивным полем. Рецептивные поля соседних нейронов частично перекрываются. В результате такой организации связей в сенсорной системе образуется так называемая нервная сеть. Благодаря ей повышается чувствительность системы к слабым сигналам, а также обеспечивается высокая приспособляемость к меняющимся условиям среды.
Тормозная переработка сенсорной информации основана на том, что обычно каждый возбужденный сенсорный нейрон активирует и тормозный интернейрон. Этот тормозный интернейрон в свою очередь подавляет импульсацию как самого возбудившего его элемента (последовательное, или возвратное, торможение), так и его соседей по слою (боковое, или латеральное, торможение). Сила этого торможения будет тем больше, чем сильнее возбужден первый элемент и чем ближе к нему будет находиться соседняя клетка.
Сенсорная система обладает способностью приспосабливать свои свойства к условиям среды и потребностям организма.
Сенсорная адаптация общее свойство сенсорных систем, заключающееся в приспособлении к длительно действующему (фоновому) раздражителю.
Эта адаптация проявляется в снижении абсолютной и повышении дифференциальной чувствительности сенсорной системы. Субъективно адаптация проявляется в привыкании к действию постоянного раздражителя (например, мы не замечаем непрерывного давления на кожу привычной одежды). Адаптационные процессы начинаются на уровне рецепторов и могут охватывать все нейронные уровни сенсорной системы.
Все анализаторы обладают этим свойством за исключением вестибуларного и проприорецептивного анализаторов.
По скорости процесса адаптации все рецепторы делятся на быстро- и медленно адаптирующиеся. Быстро адаптирующиеся рецепторы после развития адаптации практически перестают посылать в мозг информации о длящемся раздражении.
Медленно адаптирующиеся рецепторы продолжают передавать информацию о раздражителе, но в значительно ослабленном виде.
Когда действие постоянного раздражителя прекращается, абсолютная чувствительность сенсорной системы восстанавливается.
В сенсорной адаптации важную роль играет эфферентная регуляция свойств сенсорной системы. Она осуществляется за счет нисходящих влияний более высоких отделов на более низкие ее отделы. Происходит как бы перенастройка свойств нейронов на оптимальное восприятие внешних сигналов в изменившихся условиях.
Состояние разных уровней сенсорной системы контролируется также ретикулярной формацией, включающей их в единую систему, интегрированную с другими отделами мозга и организма в целом.
Взаимодействие сенсорных систем.
Взаимодействие сенсорных систем осуществляется на:
Особенно широка интеграция сигналов в ретикулярной формации. В коре большого мозга происходит интеграция сигналов высшего порядка. В результате образования множественных связей с другими сенсорными и неспецифическими системами многие корковые нейроны приобретают способность отвечать на сложные комбинации сигналов разной модальности.
Это особенно свойственно нервным клеткам ассоциативных областей коры больших полушарий, которые обладают высокой пластичностью, что обеспечивает перестройку их свойств в процессе непрерывного обучения опознанию новых раздражителей.
Межсенсорное (кроссмодальное) взаимодействие на корковом уровне создает условия для формирования «схемы (или карты) мира» и непрерывной увязки, координации с ней собственной «схемы тела» организма.