Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

1Электростатика Закон кулона и область его применения

Работа добавлена на сайт samzan.net:


1)Электростатика. Закон кулона и область его применения.

Электростатикараздел, изучающий статические (неподвижные) заряды и связанные с ними электрические поля. 

       Перемещение зарядов либо отсутствует, либо происходит так медленно, что возникающие при движении зарядов магнитные поля ничтожны. Сила взаимодействия между зарядами определяется только их взаимным расположением. Следовательно, энергия электростатического взаимодействия – потенциальная энергия.

       Несмотря на обилие различных веществ в природе, существуют только два вида электрических зарядов: заряды подобные тем, которые возникают на стекле, потертом о шелк, и заряды, подобные тем, которые появляются на янтаре, потертом о мех. Первые были названы положительными, вторые отрицательными зарядами          

Известно, что одноименные заряды отталкиваются, разноименные – притягиваются. Далее, если поднести заряженное тело (с любым зарядом) к легкому – незаряженному, то между ними будет притяжение – явление электризации легкого тела через влияние. На ближайшем к заряженному телу конце появляются заряды противоположного знака (индуцированные заряды) это явление называется электростатической индукцией.

       Опыт показывает, что возникновение заряда на любом теле сопровождается появлением заряда такой же величины, но противоположного знака на другом теле. Например, при трении стеклянной палочки о шелк заряжаются оба тела: палочка отрицательно, шелк положительно.

       Таким образом, всякий процесс заряжения есть процесс разделения зарядов. Сумма зарядов не изменяется, заряды только перераспределяются. Отсюда следует закон сохранения заряда – один из фундаментальных законов природы, сформулированный в 1747 г. Б. Франклином и подтвержденный в 1843 г. М. Фарадеем: алгебраическая сумма зарядов, возникающих при любом электрическом процессе на всех телах, участвующих в процессе всегда равна нулю. Или короче: суммарный электрический заряд замкнутой системы не изменяется.

       Электрические заряды не существуют сами по себе, а являются внутренними свойствами элементарных частиц – электронов, протонов и др.

Заряд любого тела составляет целое кратное от элементарного электрического заряда .

 

,

 

 

Электрон и протон являются соответственно носителями элементарных отрицательного и положительного зарядов.

Закон Кулона количественно описывает взаимодействие заряженных тел. Он является фундаментальным законом, то есть установлен при помощи эксперимента и не следует ни из какого другого закона природы. Он сформулирован для неподвижных точечных зарядов в вакууме. В реальности точечных зарядов не существует, но такими можно считать заряды, размеры которых значительно меньше расстояния между ними. Сила взаимодействия в воздухе почти не отличается от силы взаимодействия в вакууме (она слабее менее чем на одну тысячную). Сила взаимодействия зарядов - сила центральная, т. е. направлена вдоль прямой, соединяющей заряды .Для изотропной среды закон Кулона записывается следующим образом:

где k – коэффициент пропорциональности; q1 и q2 - величины взаимодействующих зарядов; r – расстояние между ними; r – радиус-вектор, проведенный от одного заряда к другому и направленный к тому из зарядов, на который действует сила.

Формулировка закона Кулона: «Сила электростатического взаимодействия между двумя точечными электрическими зарядами прямо пропорциональна произведению величин зарядов, обратно пропорциональна квадрату расстояния между ними и направлена вдоль соединяющей их прямой так, что одноименные заряды отталкиваются, а разноименные притягиваются».

Следует отметить, что закон Кулона применим для расчета взаимодействия точечных зарядов и тел шарообразной формы при равномерном распределении заряда по их поверхности или объёму. Точечным зарядом называется заряженное тело, размерами которого можно пренебречь по сравнению с расстояниями до других тел, несущих электрический заряд.

2)Напряженность и потенциал электрического поля. Связь между ними. Энергия взаимодействия системы зарядов.

Напряженность электрического поля. Количественной характеристикой силового действия электрического поля на заряженные тела служит векторная величина E, называемая напряжённостью электрического поля. 

E = F / q пр.

Она определяется отношением силы F, действующей со стороны поля на точечный пробный заряд qпр, помещенный в рассматриваемую точку поля, к величине этого заряда.

Напряженность поля точечного заряда. Используя закон Кулона найдем выражение для напряжённости электрического поля, создаваемого точечным зарядом q в однородной изотропной среде на расстоянии r от заряда:

    (1.2)

В этой формуле r – радиус-вектор, соединяющий заряды q и qпр. Из (1.2) следует, что напряжённость E поля точечного заряда q во всех точках поля направлена радиально от заряда при q > 0 и к заряду при q < 0.

Принцип суперпозиции. Напряжённость поля, создаваемого системой неподвижных точечных зарядов q1, q2, q3, , qn, равна векторной сумме напряжённостей электрических полей, создаваемых каждым из этих зарядов в отдельности:
                                          

где ri – расстояние между зарядом qi и рассматриваемой точкой поля.

Принцип суперпозиции, позволяет рассчитывать не только напряжённость поля системы точечных зарядов, но и напряженность поля в системах, где имеет место непрерывное распределение заряда. Заряд тела можно представить как сумму элементарных точечных зарядов dq.

Тело, которое находится в потенциальном поле сил ,обладает потенциальной энергией, за счет которой силы поля совершают работу. Как известно из классической механики, работа консервативных сил совершается за счет убыли потенциальной энергии. Значит работу сил электростатического поля можно считать как разность потенциальных энергий, которыми обладает точечный электрический заряд Q0 в начальной и конечной точках поля заряда Q:

(1)

откуда мы видим, что потенциальная энергия заряда Q
0 в поле заряда Q равна



Она, как и в классической механике, определяется неоднозначно, а с точностью до произвольной постоянной С. Если считать, что при перенесении заряда в бесконечность (r→∞) потенциальная энергия обращается в нуль (U=0), то С=0 и потенциальная энергия заряда Q
0, который находится в поле заряда Q на расстоянии r от него, равна

(2)

Для зарядов одинакового знака Q
0Q>0 потенциальная энергия их взаимодействия (в данном случае - отталкивания) положительна, для разноименных зарядов Q0Q<0 и потенциальная энергия их взаимодействия (в данном случае - притяжения) отрицательна.

Если поле создается системой n точечных электрических зарядов Q1, Q2, ..., Qn, то работа электростатических сил, которая совершается над зарядом Q0, равна алгебраической сумме работ сил, обусловленных каждым из зарядов в отдельности. Поэтому потенциальная энергия U заряда Q0, который находится в этом поле, равна сумме потенциальных энергий Ui, каждого из зарядов:

(3)

Из формул (2) и (3) следует, что отношение U/Q
0 не зависит от Q0 и является поэтому энергетической характеристикой электростатического поля, которая называется потенциалом:

(4)

Потенциал φ в какой-либо точке электростатического поля есть физическая величина, определяемая потенциальной энергией единичного положительного заряда, помещенного в эту точку.

Из формул (4) и (2) следует, что потенциал поля, создаваемого точечным зарядом Q, равен

(5)

Работа, которую совершают силы электростатического поля при перемещении заряда Q0 из точки 1 в точку 2 (см. (1), (4), (5)), может быть выражена как

(6)

3)Теорема Гаусса.

Рассмотрим точечный положительный электрический заряд q, находящийся внутри произвольной замкнутой поверхности S (рис. 1.3). Поток вектора индукции через элемент поверхности dS равен
 (1.4)

Поток вектора электрической индукции через замкнутую поверхность произвольной формы равен алгебраической сумме зарядов, охваченных этой поверхностью:

       (1.5)

Следует отметить, что заряды qi не обязательно должны быть точечными, необходимое условие - заряженная область должна полностью охватываться поверхностью. Если в пространстве, ограниченном замкнутой поверхностью S, электрический заряд распределен непрерывно, то следует считать, что каждый элементарный объём dV имеет заряд . В этом случае в правой части выражения (1.5) алгебраическое суммирование зарядов заменяется интегрированием по объёму, заключённому внутри замкнутой поверхности S:

    (1.6)

Выражение (1.6) является наиболее общей формулировкой теоремы Гаусса: поток вектора электрической индукции через замкнутую поверхность произвольной формы равен суммарному заряду в объеме, охваченном этой поверхностью, и не зависит от зарядов, расположенных вне рассматриваемой поверхности. Теорему Гаусса можно записать и для потока вектора напряженности электрического поля:

. 

ΔΦ = E ΔS cos α = En ΔS,

Из теоремы Гаусса следует важное свойство электрического поля: силовые линии начинаются или заканчиваются только на электрических зарядах или уходят в бесконечность.

Дифференциальная форма теоремы Гаусса. Отметим, что интегральная форма теоремы Гаусса характеризует соотношения между источниками электрического поля (зарядами) и характеристиками электрического поля (напряженностью или индукцией) в объеме V произвольной, но достаточной для формирования интегральных соотношений, величины. Производя деление объема V на малые объемы Vi , получим выражение

справедливое как в целом, так и для каждого слагаемого. Преобразуем полученное выражение следующим образом:

  (1.7)

и рассмотрим предел, к которому стремится выражение в правой части равенства, заключенное в фигурных скобках, при неограниченном делении объема V. В математике этот предел называют дивергенцией вектора (в данном случае вектора электрической индукции D):

Дивергенция вектора D в декартовых координатах:

Таким образом выражение (1.7) преобразуется к виду:

.

Учитывая, что при неограниченном делении сумма в левой части последнего выражения переходит в объемный интеграл, получим

Или для вектора напряженности электростатического поля

.

Эти равенства выражают теорему Гаусса в дифференциальной форме.

А)Точечный заряд :

Напряженность поля точечного заряда:

Б)Сфера :

1. Напряженность поля заряженной проводящей сферы радиуса R. Сфера заряжена по поверхности.

А) Внутри сферы заряда нет .    Е=0

Б) Снаружи сферы.

На поверхности сферы:

В)Шар :

Введем понятие объемной плотности заряда:  

Объемная плотность заряда показывает, какой заряд содержится в единице объема заряженного по всему объему тела.

Объем шара произвольного радиуса

Тогда заряд сферы радиуса r , будет:                              

                            

Следовательно:       

Г)Плоскость :

Введем понятие поверхностной плотности заряда: .

Тогда .

 

Коэффициент 2 появляется, т.к. плоскость окружена двумя поверхностями площадью S. Поле бесконечной заряженной плоскости не зависит от расстояния от плоскости! Можно пользоваться, когда расстояние много меньше размеров плоскости.

Д)Заряженная нить :

Во многих задачах электростатики требуется определить электрическое поле по заданному распределению зарядов. Пусть, например, нужно найти электрическое поле длинной однородно заряженной нити (рис. 1.2.5) на расстоянии R от нее.

Поле в точке наблюдения P может быть представлено в виде суперпозиции кулоновских полей, создаваемых малыми элементами Δx нити, с зарядом τΔx, где τ – заряд нити на единицу длины. Задача сводится к суммированию (интегрированию) элементарных полей Результирующее поле оказывается равным

Связь между потенциалом электрического поля и напряженностью определяется соотношениями:

;     (36)

,      (37)

Потенциал поля точечного заряда  в однородной и изотропной среде с диэлектрической проницаемостью можно определить по формуле

,   

Потенциал заряженной нити

4)Диполь. Поле Диполя. Диполь в электрическом поле.

Дипо́ль — идеализированная система, служащая для приближённого описания поля, создаваемого, вообще говоря, более сложными системами зарядов, а также для приближенного описания действия внешнего поля на такие системы. Дипольное приближение, выполнение которого обычно подразумевается, когда говорится о поле диполя, основано на разложении потенциалов поля в ряд по степеням радиус-вектора, характеризующего положение зарядов-источников, и отбрасывании всех членов выше первого порядка

Типичный пример диполя — два заряда, равных по величине и противоположных по знаку, находящихся друг от друга на расстоянии, очень малом по сравнению с расстоянием до точки наблюдения. Поле такой системы полностью описывается дипольным приближением.

Электрическое поле диполя

Рассмотрим поле простейшей системы точечных зарядов. Простейшей системой точечных зарядов является электрический диполь. Электрическим диполем называется совокупность равных по величине, но противоположных по знаку двух точечных зарядов –q и +q, сдвинутых друг относительно друга на некоторое расстояние. Пусть  – радиус-вектор, проведенный от отрицательного заряда к положительному. Вектор

называется электрическим моментом диполя или дипольным моментом, а вектор  – плечом диполя. Если длина  пренебрежимо мала по сравнению с расстоянием от диполя до точки наблюдения, то диполь называется точечным.

Вычислим электрическое поле электрического точечного диполя. Поскольку диполь точечный, то безразлично в пределах точности расчета от какой точки диполя отсчитывается расстояние r до точки наблюдения. Пусть точка наблюдения А лежит на продолжении оси диполя (рис. 1.13). В соответствии с принципом суперпозиции для вектора напряженности, напряженность электрического поля в этой точке будет равна

,

5)Электростатические явления в веществе.

Поляризация вещества


В веществах различают свободные и связанные заряды. Cвободными (сторонними) называются такие заряды, которые под действием сил поля могут свободно перемещаться в веществе, их перемещение не ограничивается внутримолекулярными силами, они являются положительно или отрицательно заряженными. Под связанными зарядами понимают такие, которые под действием сил поля могут смещаться только в пределах молекулы. Связанные заряды не отделимы от вещества поэтому сумма положительных связанных зарядов равна сумме отрицательных.

Д
и электрические тела в электростатическом поле поляризуются. Под поляризацией понимают упорядоченное изменение расположения связанных зарядов под действием сил поля. Наглядно можно показать поляризацию с помощью рис.11.5, на котором изображено тело при отсутствии электростатического поля и при его наличии. Если поля нет, то молекулы (диполи) расположены в хаотическом беспорядке (рис.11.5,а). В поляризованном же теле положительные связанные заряды смещаются в сторону более высокого потенциала, а отрицательные – в сторону меньшего (рис.11.5,б), причем смещаются настолько, что силы воздействия электрического поля уравновешиваются внутримолекулярными силами. В результате поляризации на поверхности вещества как бы обнажаются положительные или отрицательные связанные заряды причем сумма первых из них в точности равна сумме вторых. Диполи создают свои поля. В неполяризованном веществе их суммарное действие равно нулю, а в поляризованном – нет, оно приводит к ослаблению результирующего поля и его необходимо учитывать

Диэлектриками называются вещества, не проводящие электрический ток.

Атомы и молекулы состоят из положительно заряженных ядер и движущихся вокруг них отрицательно заряженных электронов. У диэлектриков заряды , входящие в состав молекулы, прочно связаны друг с другом и могут быть разъединены только при воздействии на них очень сильного поля. Поэтому заряды, входящие в состав молекул диэлектрика называются связанными. Под воздействием внешнего поля связанные заряды разных знаков лишь немного смещаются в противоположные стороны, покинуть состав связанные заряды не могут.

Как уже отмечалось, к диэлектрикам относятся все вещества, удельная электропроводность которых меньше 10-7 ÷ 10-8 Ом-1·м-1.

Диэлектрики в природе могут встречаться в трех агрегатных состояниях:

  1.  Газообразном: воздух

  1.  Жидком: вода; органические растворители – бензол, бензин, ксилол; масла – касторовое, трансформаторное; спирты; эфиры.

  1.  Твердом: органические материалы – воск, смола, пластмассы; кварц; керамики; ряд кристаллов – щелочно-галлоидные, галогениды серебра; сухое дерево; камень.  

В идеальных диэлектриках нет свободных зарядов, способных перемещаться по объему диэлектрика при помещении последнего во внешнее электрическое поле.

Все электрические заряды диэлектрика связаны с атомами и молекулами вещества. Число положительных и отрицательных микроскопических зарядов равно, поэтому диэлектрик считается электрически нейтральным.

Процесс смещения связанных зарядов под действием внешнего поля называется поляризацией диэлектриков.

Диэлектрики по электрическим свойствам своих молекул делятся на:

ПОЛЯРНЫЕ

НЕПОЛЯРНЫЕ

Молекулы полярных диэлектриков (вода, аммиак, соляная кислота) имеют постоянный,собственный дипольный момент:

p = qℓ = const

В этом случае «центры тяжести» положительных и отрицательных зарядов молекулы не совпадают друг с другом и молекула представляет собой жесткий диполь даже в отсутствие поля.

P ≈ 10-29 Кл·м

При отсутствие внешнего поля (Е = 0) диполи ориентируются хаотично и средний дипольный момент единицы объема равен нулю.

 

В молекулах неполярных диэлектриков (азот, водород, кислород) центры тяжести положительных и отрицательных зарядов совпадают в отсутствии внешнего поля и дипольный момент равен нулю, т.к. ℓ = 0.

При Е  0 происходит деформация молекул и возникает индуцированный дипольный момент молекулы:

= 0·, где

– поляризуемость атома или молекулы;

– диэлектрическая постоянная.

Здесь разговор об упруги

6)Вектор электрической индукции :

Имея дело с электростатическим полем в пустоте, мы вводили в рассмотрение линии напряженности. Линии напряженности в пустоте обладают тем свойством, что они тянутся непрерывно от одних зарядов до других или уходят в бесконечность. Не так обстоит дело в диэлектриках, если учитывать одни только свободные заряды. Например, на границах раздела диэлектриков возникнут связанные поверхностные заряды, и часть линий напряженности будет на них заканчиваться или с них начинаться. Таким образом, линии напряженности не пройдут непрерывно границу раздела диэлектриков. Поэтому в неоднородных диэлектриках перестает иметь смысл и теорема Остроградского — Гаусса в том виде, как она была дана раньше.

Необходимо ввести для характеристики поля внутри диэлектрика такой новый вектор
D, линии которого пойдут через диэлектрик, а также через границы их раздела непрерывно. Этот вектор называется вектором электростатической индукции; он связан с вектором напряженности Е соотношением:


D = ε0ε E

Поток вектора электрической индукции через замкнутую поверхность произвольной формы равен алгебраической сумме зарядов, охваченных этой поверхностью:

       (1.5)

Следует отметить, что заряды qi не обязательно должны быть точечными, необходимое условие - заряженная область должна полностью охватываться поверхностью. Если в пространстве, ограниченном замкнутой поверхностью S, электрический заряд распределен непрерывно, то следует считать, что каждый элементарный объём dV имеет заряд . В этом случае в правой части выражения (1.5) алгебраическое суммирование зарядов заменяется интегрированием по объёму, заключённому внутри замкнутой поверхности S:

    (1.6)

Выражение (1.6) является наиболее общей формулировкой теоремы Гаусса: поток вектора электрической индукции через замкнутую поверхность произвольной формы равен суммарному заряду в объеме, охваченном этой поверхностью, и не зависит от зарядов, расположенных вне рассматриваемой поверхности.

7)Уравнения Максвела для электростатического поля в веществе.

1. Первое уравнение Максвелла представляет собой закон Гаусса для электрических полей. Максвелл записал его в дифференциальной форме. В современной записи оно выглядит так : 

·E = ρ/εo 

где:

E – векторное электрическое поле (здесь и далее жирным шрифтом выделены векторные величины, а курсивом - скалярные);

· – значок оператора дивергенции (потока);

ρ – суммарный заряд;

εo – диэлектрическая постоянная вакуума.

Оно говорит том, что поток электрического поля Е через любую замкнутую поверхность зависит от суммарного электрического заряда внутри этой поверхности. Иначе говоря, если из замкнутого бассейна вытекает воды больше, чем в него втекает (то есть суммарный поток из бассейна получается больше нуля), то ясно, что внутри бассейна прячется труба – источник этой самой воды (иначе бы она быстро кончилась).

С электрическим полем то же самое: если есть электрический заряд (труба-источник воды в бассейне), то поле от него будет вытекать наружу во все стороны (вода будет выливаться через края).

Рассмотрим поведение векторов E и D на границе раздела двух однородных изотропных диэлектриков с проницаемостями и при отсутствии на границе зарядов

Граничные условия для нормальных составляющих векторов D и E следуют из теоремы Гаусса. Выделим вблизи границы раздела замкнутую поверхность в виде цилиндра, образующая которого перпендикулярна к границе раздела, а основания находятся на равном расстоянии от границы (рис. 2.6).

Так как на границе раздела диэлектриков нет свободных зарядов, то, в соответствии с теоремой Гаусса, поток вектора электрической индукции через данную поверхность

.

Выделяя потоки через основания и боковую поверхность цилиндра

,

где - значение касательной составляющей усредненное по боковой поверхности . Переходя к пределу при (при этом также стремится к нулю), получаем , или окончательно для нормальных составляющих вектора электрической индукции

.

Для нормальных составляющих вектора напряженности поля получим

.

Таким образом, при переходе через границу раздела диэлектрических сред нормальная составляющая вектора терпит разрыв, а нормальная составляющая вектора непрерывна.

8) Сегнетоэлектрики :

Сегнетоэлектрики — диэлектрики, которые обладают в определенном интервале температур спонтанной поляризованностью, т. е. поляризованностью в условиях отсутствия внешнего электрического поля. К сегнетоэлектрикам относятся, например, сегнетова соль NaKC4H4O6• и титанат бария ВаТiO3.

Свойства и поведение сегнетоэлектриков имеют следующее объяснение. Взаимодействие частиц в кристалле сегнетоэлектрика приводит к тому, что их дипольные моменты спонтанно устанавливаются параллельно друг другу. В исключительных случаях одинаковая ориентация дипольных моментов распространяется на весь кристалл. Обычно же в кристалле возникают так называемые
домены, в пределах каждой из которых дипольные моменты параллельны друг другу. Однако направления поляризации разных доменов бывают различными, так что  результирующий момент всего кристалла может быть равен нулю.

Сегнетоэлектрические свойства веществ сильно зависят от температуры. Для каждого сегнетоэлектрика есть определенная температура, выше которой его данные необычные свойства исчезают и он превращается в обычный диэлектрик. Эта температура называется
точкой Кюри .Обычно, сегнетоэлектрики обладают только одной точкой Кюри; исключение составляют лишь сегнетова соль (—18 и +24°С) и изоморфные с нею соединения. В сегнетоэлектриках вблизи точки Кюри наблюдается также резкое возрастание теплоемкости вещества. Превращение сегнетоэлектриков в обычный диэлектрик, которое происходит в точке Кюри, сопровождается фазовым переходом II рода.

Диэлектрическая проницаемость ε сегнетоэлектриков зависит от напряженности
Е поля в веществе, при этом эти величины являются характеристиками вещества для других диэлектриков.

Для сегнетоэлектриков не соблюдается формула связи поляризованности и напряженности поля
P=θε0E ; для них зависимость между векторами поляризованности (Р) и напряженности (Е) нелинейная и зависит от значений Е в предыдущие моменты времени. В сегнетоэлектриках наблюдается явление диэлектрического гистерезиса (запаздывания). С ростом напряженности Е внешнего электрического поля поляризованность Р растет, достигая при этом насыщения .Уменьшение Р с уменьшением Е происходит и при Е=0 сегнетоэлектрик сохраняет остаточную поляризованность Р0, т.е. сегнетоэлектрик остается поляризованным в отсутствие внешнего электрического поля. Чтобы уничтожить остаточную поляризованность, надо приложить внешнее электрическое поле обратного направления (—Eс). Величина Еc называется коэрцитивной силой. Если далее Е изменять, то Р изменяется по кривой 3 петли гистерезиса.

9)Проводники в электрическом поле.

Заряженные частицы, которые могут свободно перемещаться в электрическом поле, называют свободными зарядами, а вещества, содержащие их, - проводниками. Проводниками являются металлы, жидкие растворы и расплавы электролитов. Свободными зарядами в металле являются электроны внешних оболочек атомов, потерявшие с ними связь. Эти электроны, называемые свободными электронами, могут свободно двигаться по металлическому телу в любом направлении. В растворах солей свободными зарядами служат положительно и отрицательно заряженные ионы.

В условиях электростатики, т.е., когда электрические заряды неподвижны, напряжённость электрического поля внутри проводника всегда равна нулю. Действительно, если предположить, что поле внутри проводника всё-таки есть, то тогда на находящиеся в нём свободные заряды будет действовать электрические силы, пропорциональные напряжённости поля, и эти заряды начнут двигаться, а значит, поле перестанет быть электростатическим. Таким образом, электростатическое поле внутри проводника отсутствует.

Исчезновение внутри проводника электростатического поля происходит следующим образом. Пусть металлический проводник в форме шара вносят в электрическое поле, напряжённость которого в данной области постоянна, т.н. однородное поле. Как только это произойдёт, свободные электроны проводника под действием электрических сил начнут перемещаться (см. стрелки на рис. 36а), в результате чего одна часть проводника зарядится положительно, а другая – отрицательно. Этот процесс перемещения закончится тогда, когда образовавшиеся заряды на противоположных частях шара создадут внутри проводника такое поле, которое полностью компенсирует внешнее электрическое поле. После этого напряжённость электрического поля внутри шара станет равной нулю, и свободные заряды опять станут неподвижными. При этом переместившиеся заряды изменят поле снаружи проводника (рис. 36б), а его силовые линии станут перпендикулярными поверхности шара, т.к. составляющая вектора напряжённости, параллельная поверхности проводника, вызвала бы движение его свободных зарядов. Явление, приводящее к исчезновению электростатического поля внутри проводника, называют электростатической индукцией.     

Все внутренние области проводника, внесенного в электрическое поле, остаются электронейтральными. Если удалить некоторый объем, выделенный внутри проводника, и образовать пустую полость, то электрическое поле внутри полости будет равно нулю. На этом основана электростатическая защита – чувствительные к электрическому полю приборы для исключения влияния поля помещают в металлические ящики (рис. 1.5.2).

Рисунок 1.5.2.

Так как поверхность проводника является эквипотенциальной, силовые линии у поверхности должны быть перпендикулярны к ней.

10)Электроёмкость уединенного проводника.

Сообщенный проводнику заряд q распределяется по его поверхности так, чтобы напряженность поля внутри проводника была равна нулю. Если проводнику, уже несущему заряд q , сообщить еще заряд той же величины, то второй заряд должен распределиться по проводнику точно также, как и первый, в противном случае он создает в проводнике поле, не равное нулю. Таким образом, различные по величине заряды распределяются на удаленном от других тел (уединенном) проводнике подобным образом, т.е. отношение плотностей заряда в двух произвольных точках поверхности проводника при любой величине заряда будет одно и то же.

Отсюда вытекает, что потенциал уединенного проводника пропорционален находящемуся на нем заряду. Действительно, увеличение в некоторое число раз заряда приводит к увеличению в тоже число раз напряженности поля в каждой точке окружающего проводника пространства, т.е. 

Вводя соответствующий коэффициент пропорциональности, запишем или

(15.2)

где С - называется электроемкостью.

Таким образом, электроемкость уединенного проводника есть физическая величина численно равная величине заряда, который необходимо сообщить данному проводнику для увеличения его потенциала на единицу. В СИ единицей емкости является Фарад (Ф).

Определим электроемкость уединенного шара. Потенциал заряженного шара радиуса R

Сравнивая с получаем:

11) Конденсаторы :

Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников. Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U. Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q. В этом случае можно ввести понятие электрической емкости.

Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:

В системе СИ единица электроемкости называется фарад (Ф):

Бывают нужны такие устройства, которые при небольшом потенциале накапливали бы на себе большие заряды. В основу таких устройств, называемых конденсаторами , положен тот факт, что ёмкость проводника возрастает при приближении к нему другого проводника.  Это вызвано тем, что под действием поля, создаваемого заряженным проводником, на находящемся поблизости незаряженном проводящем теле возникают индуцированные заряды. Конденсаторы делают в виде двух проводников, называемых обкладками, помещенных близко друг к другу. Для того, чтобы внешние тела не влияли на ёмкость конденсатора, обкладкам предают такую форму и так располагают их друг относительно друга , чтобы поле, создаваемое накапливаемыми на них зарядами , было сосредоточено внутри конденсатора.

Каждая из заряженных пластин плоского конденсатора создает вблизи поверхности электрическое поле, модуль напряженности которого выражается соотношением

Согласно принципу суперпозиции, напряженность поля, создаваемого обеими пластинами, равна сумме напряженностей и полей каждой из пластин:

Внутри конденсатора вектора и параллельны; поэтому модуль напряженности суммарного поля равен

Вне пластин вектора и направлены в разные стороны, и поэтому E = 0. Поверхностная плотность σ заряда пластин равна q / S, где q – заряд, а S – площадь каждой пластины. Разность потенциалов Δφ между пластинами в однородном электрическом поле равна Ed, где d – расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:

Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз:

Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы. Сферический конденсатор – это система из двух концентрических проводящих сфер радиусов R1 и R2. Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R1 и R2 и длины L. Емкости этих конденсаторов, заполненных диэлектриком с диэлектрической проницаемостью ε, выражаются формулами:

(сферический конденсатор),
(цилиндрический конденсатор).

12) Энергия заряженного проводника.

Рассмотрим уединенный проводник, заряд, потенциал и емкость которого соответственно равны Q, φ и С. Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконечности на уединенный проводник, при этом затратив на это работу, которая равна

- элементарная работа сил электрического поля заряженного проводника">

Чтобы зарядить тело от нулевого потенциала до φ, нужно совершить работу

(2)

Энергия заряженного проводника равна той работе, которую необходимо совершить, чтобы зарядить этот проводник:

(3)

Формулу (3) можно также получить и условия, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной. Если φ - потенциал проводника, то из (1) найдем



где Q=∑Qi - заряд проводника.

Энергия заряженного конденсатора. Конденсатор состоит из заряженных проводников поэтому обладает энергией, которая из формулы (3) равна

(4)

13 )Энергия электрического поля.

Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает

Частное U / d равно напряженности поля в зазоре; произведение S·d представляет собой объем V, занимаемый полем. Следовательно, энергия электрического поля : 

Если поле однородно (что имеет место в плоском конденсаторе при расстоянии d много меньшем, чем линейные размеры обкладок), то заключенная в нем энергия распределяется в пространстве с постоянной плотностью w. Тогда объемная плотность энергии электрического поля равна

C учетом соотношения можно записать

14) Постоянный электрический ток

Электрическим током называют упорядоченное (направленное) движение заряженных частиц. Такими заряженными частицами в проводниках – веществах, проводящих электрический ток, – являются электроны, а в жидкостях и газах – еще и заряженные ионы – атомы, лишенные одного или нескольких электронов (либо наоборот, имеющие лишние электроны). Для возникновения электрического тока в проводнике, необходимо создать электрическое поле, которое поддерживается источниками электрического тока.

Постоянный ток - это электрический ток, который не изменяет своего направления с течением времени. Переменный ток - с течением времени в определенной закономерности изменяет как свою величину, так и направление. Причем данные изменения повторяются через определенные промежутки

Сила тока I равна отношению электрического заряда q, прошедшего через поперечное сечение проводника, ко времени его прохождения:

  

Плотность тока - векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

где j -плотность тока,  S - площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

15)ЭДС и Закон Ома :

 Смещение под действием электрического поля зарядов в проводнике всегда происходит таким образом, что электрическое поле в проводнике исчезает и ток прекращается. Для протекания тока в течение продолжительного времени на заряды в электрической цепи должны действовать силы, отличные по природе от сил электростатического поля, такие силы получили название сторонних сил.

Сторонние силы можно охарактеризовать работой, которую они совершают над перемещающимися по цепи зарядами. Эта работа складывается из работы, совершаемой против электрического поля внутри источника тока Аист и работы, совершаемой против сил сопротивления среды (А’), т.е. Астист+А’

Величина, равная отношению работы, которую совершают сторонние силы при перемещении точечного положительного заряда вдоль всей цепи, включая и источник тока, к заряду , называется электродвижущей силой источника тока:

(17.3)

Работа против сил электрического поля, по определению равна

Если полюсы источника разомкнуты, то и тогда

т.е. эдс источника тока при разомкнутой внешней цепи равна разности потенциалов, которая создается на его полюсах. Таким образом, размерность эдс совпадает с размерностью потенциала. Поэтому измеряется в тех же единицах, что и - в вольтах.

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

где R = const.

Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Данное соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Закон Ома в интегральной форме для однородного участка цепи (не содержащего ЭДС)

 

 Найдем связь между  и  в бесконечно малом объеме проводника – закон Ома в дифференциальной форме.

Закон Ома в дифференциальной форме - описывает исключительно электропроводящие свойства материала, вне зависимости от геометрических размеров.

      В изотропном проводнике (в данном случае с постоянным сопротивлением) носители зарядов движутся в направлении действия силы, т.е. вектор плотности тока  и вектор напряженности поля  коллинеарны (рис. 7.6).

Рис. 7.6

Исходя из закона Ома, имеем :

А мы знаем, что  или . Отсюда можно записать

 

,

где: j — вектор плотности тока,  — удельная проводимость,

E— вектор напряжённости электрического поля.

(7.6.3)

 

 это запись закона Ома в дифференциальной форме.

Удельной проводимостью (удельной электропроводностью) называют меру способности вещества проводить электрический ток. Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде:

где

  1.   — удельная проводимость,
  2.   — вектор плотности тока
  3.   — вектор напряжённости электрического поля.

16) Работа и мощность тока

При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = I Δt. Электрическое поле на выделенном участке совершает работу

ΔA = (φ1φ2Δq = Δφ12 I Δt = U I Δt,

где U = Δφ12 – напряжение. Эту работу называют работой электрического тока.

Если обе части формулы

RI = U,

выражающей закон Ома для однородного участка цепи с сопротивлением R, умножить на IΔt, то получится соотношение

R I2 Δt = U I Δt = ΔA.

Это соотношение выражает закон сохранения энергии для однородного участка цепи.

Работа ΔA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике.

ΔQ = ΔA = R I2 Δt.- (1)

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем и носит название закона Джоуля–Ленца (количество выделившейся в проводнике теплоты пропорционально его сопротивлению , квадрату силы тока и времени ).

Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена:

Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).

Соотношение (1) выражает закон Джоуля-Ленца в интегральной форме. Введем плотность тепловой мощности , равную энергии выделенной за единицу время прохождения тока в каждой единице объема проводника

где S - поперечное сечение проводника, - его длина. Используя (1.13) и соотношение , получим :


Но
- плотность тока, а , тогда

с учетом закона Ома в дифференциальной форме , окончательно получаем

(17.14)

Формула (17.14) выражает закон Джоуля-Ленца в дифференциальной форме: объемная плотность тепловой мощности тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряженности электрического поля.

17) Магнитное поле в вакууме

Взаимодействие электрических токов между собой осуществляется через поле, называемое магнитным. В опыте Эрстеда ( первый опыт с магнитным полем ) проволока, по которой шел ток, была натянута над магнитной стрелкой, вращающейся на игле. При включении тока стрелка устанавливалась перпендикулярно к проволоке. Изменение направления тока взывало поворот стрелки в противоположную сторону. Из опыта Эрстеда следует, что магнитное поле имеет направленный характер и должно характеризоваться векторной величиной. Магнитное поле в отличии от электрического не оказывает действия на покоящийся заряд. Сила возникает лишь тогда, когда заряд движется. Магнитное поле порождается движущимися зарядами.

Магнитная индукция — это векторная физическая величина, являющаяся силовой характеристикой магнитного поля, численно равная максимальному вращающему моменту, действующему на контур с единичным магнитным моментом, и направленная вдоль положительной нормали к контуру.

Модуль магнитной индукции равен

Единицей магнитной индукции в СИ является тесла (Тл).

1 Тл = Н·м/(А·м2) = Н/(А·м) .

1 Тл — магнитная индукция такого однородного поля, в котором на контур с магнитным моментом 1 А·м2 действует вращающий момент 1 Н·м.

Магнитная индукция  B  полностью характеризует магнитное поле. В каждой точке может быть найден ее модуль и направление.

Поле, в каждой точке которого модуль и направление магнитной индукции одинаковы ( B =const) , называется однородным магнитным полем.

Если магнитное поле образовано системой n проводников с токами, то, имеет место принцип суперпозиции магнитных полей: магнитная индукция поля системы токов равна геометрической сумме магнитных индукцией полей каждого из токов в отдельности:

 B =B 1+B 2+…+B n=ni=1B i.

Индукция в вакууме или воздухе равна     

  , где .

18)Закон Био-Савара-Лапласа.

Определяет величину модуля вектора магнитной индукции в точке выбранной произвольно находящейся в магнитном поле. Поле при этом создано постоянным током на некотором участке.

Закон Био-Савара-Лапласа для проводника с током I, элемент dl которого создает в некоторой точке индукцию поля dB, равен

(1)

где dl - вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током, r - радиус-вектор, который проведен из элемента dl проводника в точку А поля, r - модуль радиуса-вектора r. Направление dB перпендикулярно dl и r, т. е. перпендикулярно плоскости, в которой они лежат, и совпадает с направлением касательной к линии магнитной индукции. Это направление может быть найдено по правилу правого винта: направление вращения головки винта дает направление dB, если поступательное движение винта совпадает с направлением тока в элементе.

Модуль вектора d
B задается выражением

(2)

где α — угол между векторами dl и r.

Магнитное поле кругового тока

Определим индукцию поля в центре О кругового тока по формуле

.

 

Так как , а  и  – постоянные; , так как сумма всех элементарных отрезков  составляет длину окружности.

Следовательно,

 

Магнитное поле проводника конечной длины с током.

Рассчитаем индукцию магнитного поля В, создаваемую в точке А (рис. 2.2) на расстоянии r0 от прямолинейного проводника с током:

 

 

 

;

 

;

 

.                 (2.4)

 

 

Выразим переменные  и . Из рис. 2.2 видно, что . Дифференцируя это выражение, получаем:

 

.

 

Из рис. 2.2 так же следует, что

 

.

 

Подставляя значения  и r в уравнение (2.4), имеем:

 

 

.

19)Сила Лоренца

Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца в честь великого голландского физика Х. Лоренца (1853 — 1928) — основателя электронной теории строения вещества. Силу Лоренца можно найти с помощью закона Ампера.

Рассмотрим отрезок тонкого прямого проводника с током. Пусть длина отрезка Δl и площадь поперечного сечения проводника S настолько малы, что вектор индукции магнитного поля можно считать одинаковым в пределах этого отрезка проводника. Сила тока I в проводнике связана с зарядом частиц q, концентрацией заряженных частиц n (числом зарядов в единице объема) и скоростью их упорядоченного движения v следующей формулой:

I = qnvS ( 2 )

Модуль силы, действующей со стороны магнитного поля на выбранный элемент тока, равен:

F = | I |B Δl sin α

Подставляя в эту формулу выражение ( 2 ) для силы тока, получаем:

F = | q | nvS Δl B sin α = v | q | NB sin α,


где
N = nSΔl — произведение равное числу носителей тока, содержащихся в элементе тока dl. Разделив dF на это число, найдем силу F ,действующую на заряд q движущийся со скоростью v.

Сила Лоренца перпендикулярна векторам магнитной индукции и скорости упорядоченного движения заряженных частиц. Ее направление определяется с помощью того же правила левой руки, что и направление силы Ампера.

Движение частиц в однородном магнитном поле :

Для вывода общих закономерностей будем полагать, что магнитное поле однородно и на частицы не действуют электрические поля. Если заряженная частица в магнитном поле движется со скоростью v вдоль линий магнитной индукции, то угол α между векторами v и В равен 0 или π. Тогда сила Лоренца равна нулю, т. е. магнитное поле на частицу не действует и она движется равномерно и прямолинейно.

1)В случае, если заряженная частица движется в магнитном поле со скоростью
v, которая перпендикулярна вектору В, то сила Лоренца F=Q[vB] постоянна по модулю и перпендикулярна к траектории частицы. По второму закону Ньютона, сила Лоренца создает центростремительное ускорение. Значит, что частица будет двигаться по окружности, радиус r которой находится из условия QvB=mv2/r , следовательно

(1)



Период вращения частицы, т. е. время Т, за которое она совершает один полный оборот,



Подставив (1), получим

(2)

т. е. период вращения частицы в однородном магнитном поле задается только величиной, которая обратна удельному заряду (Q/m) частицы, и магнитной индукцией поля, но при этом не зависит от ее скорости (при v<<c). На этом соображении основано действие циклических ускорителей заряженных частиц.

2)В случае, если скорость
v заряженной частицы направлена под углом α к вектору В ,то ее движение можно задать в виде суперпозиции: 1) прямолинейного равномерного движения вдоль поля со скоростью vparall=vcosα ; 2) равномерного движения со скоростью vperpend=vsinα по окружности в плоскости, которая перпендикулярна полю. Радиус окружности задается формулой (1) (в этом случае надо вместо v подставить vperpend=vsinα). В результате сложения двух данных движений возникает движение по спирали, ось которой параллельна магнитному полю (рис. 1). Шаг винтовой (спиральной) линии



Подставив в данное выражение (2), найдем


Направление, в котором закручивается спираль, определяется знаком заряда частицы.
Если скорость v заряженной частицы составляет угол α с направлением вектора В неоднородного магнитного поля, у которого индукция возрастает в направлении движения частицы, то r и h уменьшаются с увеличением В. На этом основана фокусировка заряженных частиц в магнитном поле.

20)Сила Ампера :

Как нам уже известно, магнитное поле оказывает на рамку с током ориентирующее действие. Значит, вращающий момент, который испытывает рамка, является результатом действия сил на отдельные ее элементы. Сравнивая и обобщая результаты исследования действия магнитного поля на различные проводники с током, Ампер открыл, что сила dF, с которой магнитное поле действует на элемент проводника dl с током, который находится в магнитном поле, равна



(1)

где d
l - вектор, по модулю равный dl и совпадающий по направлению с током, В - вектор магнитной индукции.

Направление вектора d
F может быть определено, используя (1), по правилу векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца расположить по направлению тока в проводнике, то отогнутый большой палец покажет направление силы, которая действует на ток


Модуль силы Ампера (см. (1)) равен



(2)


где α — угол между векторами d
l и В.


Закон Ампера используется при нахождении силы взаимодействия двух токов. Рассмотрим два бесконечных прямолинейных параллельных тока I
1 и I2; (направления токов даны на рис. 1), расстояние между которыми R. Каждый из проводников создает вокруг себя магнитное поле, которое действует по закону Ампера на соседний проводник с током. Найдем, с какой силой действует магнитное поле тока I1 на элемент dl второго проводника с током I2. Магнитное поле тока I1 есть линии магнитной индукции, представляющие собой концентрические окружности. Направление вектора B1 задается правилом правого винта, его модуль по формуле (5) есть





Направление силы d
F1, с которой поле B1 действует на участок dl второго тока, находится по правилу левой руки и указано на рисунке. Модуль силы, используя (2), с учетом того, что угол α между элементами тока I2 и вектором B1 прямой, будет равен



подставляя значение для
В1, найдем



(3)

Аналогично рассуждая, можно показать, что сила d
F2 с которой магнитное поле тока I2 действует на элемент dl первого проводника с током I1, направлена в противоположную сторону и по модулю равна



(4)

Сопоставление выражений (3) и (4) дает, что





т. е.
два параллельных тока одинакового направления притягиваются друг к другу с силой, равной

(5)

Если
токи имеют противоположные направления, то, используя правило левой руки, определим, что между ними действует сила отталкивания, определяемая выражением (5).

20) Уравнения Максвелла в системе уравнений магнитостатики и электростатики

         Так как на практике почти всегда приходится решать уравнения Максвелла (1) – (4) в кусочно-непрерывных средах, то граничные условия (24) следует рассматривать как неотъёмлемую часть уравнений Максвелла (1) – (4).

         В случае стационарных электрических и магнитных полей ( и) система уравнений Максвелла (1) – (4) распадается на систему

уравнений электростатики:

                                           ,      ,                                          (25)

и уравнений магнитостатики:

                                          ,     ,     ,                                (26)

а граничные условия остаются те же

21) Магнитное поле в веществе.

До сих пор рассматривалось магнитное поле, которое создавалось проводниками с током или движущимися электрическими зарядами, находящимися в вакууме. Если же магнитное поле создается не в вакууме, а в какой-то другой среде, то магнитное поле изменяется. Это объясняется тем, что различные вещества, помещенные в магнитное поле, намагничиваются и сами становятся источниками магнитного поля. Вещества, способные намагничиваться в магнитном поле, называются магнетиками. Намагниченное вещество создает магнитное поле с индукцией , которое накладывается на магнитное поле с индукцией , обусловленное токами. Оба поля в сумме дают результирующее поле, магнитная индукция которого равна

.

Под действием поля магнитные моменты молекул приобретают преимущественную ориентацию в одном направлении, вследствие чего магнетик намагничивается – его суммарный магнитный момент становится отличным от нуля. Магнитные поля отдельных молекулярных токов в этом случае уже не компенсируют друг друга и возникает поле В'.

Намагничение магнетика естественно характеризовать магнитным моментом единицы объема. Эту величину называют вектором намагничивания и обозначают J. Если магнетик намагничен неоднородно, вектор намагничения в данной точке определяется следующим выражением:                                                                     (43.2)

где ΔV–физически бесконечно малый объем, взятый в окрестности рассматриваемой точки, рm – магнитный момент отдельной молекулы. Суммирование производится по всем молекулам, заключенным в объеме ΔV.

Магнитный момент тока это произведение площади контура, в котором он протекает на силу тока в нем. Магнитный момент направлен перпендикулярно плоскости контура. Это направление можно определить с помощью правила буравчика. Если буравчик вращать по направлению движения тока в контуре, то его поступательное движение укажет направление магнитного момента.

В случае плоского контура с электрическим током магнитный момент вычисляется как

,

где — сила тока в контуре, — площадь контура, — единичный вектор нормали к плоскости контура. Направление магнитного момента обычно находится по правилу буравчика: если вращать ручку буравчика в направлении тока, то направление магнитного момента будет совпадать с направлением поступательного движения буравчика.

22) Напряженность магнитного поля

Она необходима для определения магнитной индукции поля, создаваемого токами различной конфигурации в различных средах. Напряженность магнитного поля характеризует магнитное поле в вакууме.

Напряженность магнитного поля (формула) векторная физическая величина, равная:

Где u0- магнитная постоянная. Гн/м Н/А².

Напряженность магнитного поля в СИ - ампер на метр (А/м).

Векторы индукции (В) и напряженности магнитного поля (Н) совпадают по направлению. Если знать Напряженность магнитного поля в данной точке, то можно определить индукцию поля в этой точке.

Напряженность магнитного поля зависит только от силы тока, протекающего по проводнику, и его геометрии.

С помощью следующей формулы, мы можем сформулировать теорему о циркуляции вектора H : циркуляция вектора напряженности магнитного поля по некоторому контуру равна алгебраической сумме макроскопических токов, охватываемых этим контуром.

Напряженность магнитного поля является аналогом электрического смещения.

23)Условия для H и B на границе раздела двух изотропных магнетиков :

Рассмотрим поведение линий векторов магнитной индукции и напряжённости магнитного поля при переходе через границу раздела двух магнетиков.

Представим себе две однородные, изотропные полубесконечные среды с магнитными проницаемостями и , имеющие плоскую горизонтальную границу раздела. Пусть оба магнетика находятся в однородном внешнем магнитном поле. Чтобы понять, как происходит преломление линий векторов магнитной индукции и напряжённости магнитного поля через эту границу, рассмотрим проекции этих векторов на саму границу и на направление, перпендикулярное границе и назовём их касательными и нормальными составляющими, соответственно.

Пусть и ─ нормальные составляющие векторов магнитной индукции и напряжённости магнитного поля, а и ─ касательные составляющие тех же векторов в верхней среде, имеющей магнитную проницаемость . Аналогичные величины в нижней среде, имеющей магнитную проницаемость , обозначим .

Представим себе, что линии вектора преломляются при переходе через границу раздела так, как показано на рис. 1. Рассмотрим при этом преломление пока только одной силовой линии.

Поместим на границе раздела воображаемую цилиндрическую поверхность с высотой h значительно меньшей радиусов оснований S1 и S2, лежащих по обе стороны от границы раздела и параллельных ей. На рисунке также показана нормаль к границе раздела и к обоим основаниям.

Запишем теорему Гаусса для магнитной индукции:

или ,

где S ─ замкнутая поверхность, состоящая из боковой поверхности и оснований цилиндра.

Этот круговой интеграл можно разбить на 3 интеграла, каждый из которых равен потоку через верхнее и нижнее основания и боковую поверхность:

.

Здесь и ─ нормальные составляющие векторов магнитной индукции в верхнем и нижнем магнетиках, соответственно, ─ среднее значение проекции вектора магнитной индукции на нормаль к боковой поверхности.

Поскольку оба магнетика помещены в однородное внешнее магнитное поле, то все интегралы можно заменить соответствующими произведениями:

.

Как и в предыдущей формуле, здесь первая составляющая магнитного потока положительна, так как силовые линии выходят из поверхности , а вторая составляющая ─ отрицательна, так как силовые линии входят в поверхность (вектора и спроектированы на одну и ту же нормаль). Третьей составляющей ─ можно пренебречь, так как высота цилиндра выбрана очень малой по сравнению с радиусами оснований, т. е., если , то .

Учитывая, что , получим:

. (1)

Используя связь магнитной индукции и напряжённости магнитного поля

, (2)

и, применяя её для первого и второго магнетиков в формуле (1), получим:

.

Отсюда следует

. (3)

24)Контур с током в магнитном поле :

Рассмотрим действие магнитного поля на замкнутый контур с током. Для характеристики плоского контура с током вводят вектор магнитного момента , где S – площадь, ограниченная контуром, а направление нормали связано правилом правого винта с направлением тока в контуре (рис.84).

Рассмотрим плоский контур в однородном магнитном поле. Сила, действующая со стороны магнитного поля на весь контур на основании закона Ампера равна:

 .

Так как сила тока и магнитная индукция при указанных условиях постоянны, то их можно вынести из-под знака суммы, а сумма элементарных векторов , в виде цепочки которых можно представить контур, равна нулю (рис.85).

Если результирующая сила равна нулю, то центр масс контура будет оставаться неподвижным, т. е. контур не будет двигаться поступательно, но возможно вращательное движение. Найдем вращающий момент сил, действующих на контур.

Рассмотрим простейший случай – линии вектора магнитной индукции лежат в плоскости контура. Разобьем контур на бесконечно узкие полоски шириной , параллельные линиям индукции.

Каждая полоска ограничена элементами тока, на которые со стороны магнитного поля действуют силы

и

перпендикулярные плоскости чертежа и противоположные по направлению.

, .

Величина момента этой пары сил (равные по величине и противоположные по направлению):

  1.  
  2.  

Моменты сил действующих на все пары элементов тока контура направлены в одну строну и величина момента, действующего на весь контур .

Следовательно, в этом случае при , величина вращающего момента равна .

В общем случае и .

Вращающий момент равен нулю при и . В первом случае и положение контура устойчивое.

Во втором случае и положение контура неустойчивое. На рис.86 представлено возникновение вращающего момента для прямоугольного контура с током.

Если контур с током не плоский, то каждый элемент контура можно представить в виде двух векторов, параллельных и перпендикулярных вектору индукции . Вращающий момент будет определяться «проекцией» контура на плоскость параллельную линиям индукции.

При повороте контура на малый угол совершается работа

, которая определяет изменение энергии контура при этом. Пусть контур жесткий (pm=const).

Введем условие нормировки. При .

- энергия жесткого контура в магнитном поле при условии, что его энергия принята нулевой в положении, когда магнитный момент контура перпендикулярен вектору магнитной индукции.

Энергия контура минимальна, если магнитный момент параллелен вектору магнитной индукции, т. е. в этом случае контур находится в устойчивом положении равновесия. В неустойчивом положении энергия контура будет максимальна.

В общем случае неоднородного поля описать поведение контура достаточно сложно. Поэтому рассмотрим случай, когда поле неоднородно, но величина магнитной индукции существенно изменяется в направлении линий магнитной индукции и практически не изменяется в перпендикулярных к ним направлениях (рис.88а).

В этом случае также возникает момент сил, ориентирующий магнитный момент в направлении вектора магнитной индукции. В отличие от однородного поля результирующая сила, действующая на контур не равна нулю, так каждую силу можно представить в виде двух слагаемых

.

Сумма сил, лежащих в плоскости контура, определяет деформацию контура, а силы, перпендикулярные плоскости контура определяют втягивание контура в область более сильного поля (рис.88б).

Для элементарного контура (малых размеров) и в случае указанного неоднородного поля сила, действующая на него, может быть определена по следующей формуле

,

т. е. для жесткого контура направление силы обусловлено изменением вектора магнитной индукции вдоль направления нормали к контуру.

25)Диамагнетики :

Диамагнетики – вещества, которые слабо намагничиваются против поля, то есть поле в диамагнетиках слабее, чем в вакууме, магнитная проницаемость m < 1.

Влияние магнитного поля на движение электронов в атомах вещества упрощенно состоит в следующем. В магнитном поле на движущийся электрон помимо силы Кулона , действующей со стороны ядра, действует еще сила Лоренца . Если плоскость орбиты электрона перпендикулярна вектору индукции магнитного поля , то это приводит только к изменению угловой скорости его вращения по орбите и, следовательно, к появлению дополнительного магнитного момента , направление которого противоположно вектору индукции  (рис. 5.1а). Если же орбита электрона расположена произвольным образом относительно вектора , так что орбитальный магнитный момент электрона составляет с вектором  угол a, то влияние поля оказывается более сложным. В этом случае вся орбита приходит в такое движение, при котором угол a сохраняется неизменным, а вектор  вращается  вокруг вектора  с определенной угловой скоростью. Такое движение в механике называется прецессией (рис. 5.1б). Изменение угловой скорости вращения электрона или, в общем случае,

появление прецессии эквивалентно дополнительному орбитальному току , которому соответствует индуцированный орбитальный момент электрона . Этот вектор противоположен по направлению вектору индукции магнитного поля . Если в атоме имеется несколько электронов, то общий индуцированный орбитальный момент атома равен векторной сумме индуцированных орбитальных магнитных моментов всех электронов: .

Под действием внешнего магнитного поля происходит прецессия электронных орбит с одинаковой для всех электронах с  угловой скоростью. Обусловленное прецессией дополнительное движение электронов приводит к возникновению индуцированного магнитного момента атома, направленного против поля. Ларморова прецессия возникает у всех без исключения веществ. Однако в тех случаях, когда атомы обладают сами по себе магнитным моментом, магнитное поле не только индуцирует дополнительные момент, но и оказывает на собственные магнитные моменты атомов ориентирующее действе, устанавливая их по направлению поля. Возникающей при этом положительный магнитный момент бывает значительно больше, чем отрицательный индуцированный момент. Поэтому результирующий момент оказывается положительным. У диамагнетиков магнитные моменты атомов при отсутствии магнитного поля  равны нулю. При внесении диамагнитного вещества в магнитное поле в каждом его атоме индуцируется магнитный момент, направленный противоположно вектору индукции внешнего магнитного поля. Магнитные свойства диамагнетиков обусловлены только индуцированными магнитными моментами. Именно поэтому диамагнетики намагничиваются против поля.

25)Пармагнетизм :

Парамагнетиками называются вещества, у которых атомы в отсутствии внешнего магнитного поля обладают некоторым постоянным магнитным моментом

при .

Однако, вследствие теплового движения молекул их магнитные моменты ориентированы беспорядочно, поэтому . При наложении магнитного поля возникают силы, ориентирующие магнитные моменты каждого атома. Магнитные моменты стараются выстроиться по полю. Таким образом, парамагнетик намагничивается, создавая собственное магнитное поле, со направленное с внешним полем и усиливающего его.

Процесс ориентации магнитных моментов атомов во внешнем магнитном поле называется парамагнитным эффектом.

В парамагнетике выстраивающие силы относительно малы по сравнению с силами теплового движения, которые стремятся разрушить упорядочение. Поэтому с понижением температуры магнитная восприимчивость парамагнетиков обычно возрастает.

В результате устанавливается некоторая преимущественная ориентация магнитных моментов атомов вдоль поля. Пьер Кюри (Curie P., 1859-1906) экспериментально установил, что магнитная восприимчивость парамагнетика зависит от температуры согласно закону (закон Кюри):

,

где С – постоянная Кюри, зависящая от рода вещества.

Количественная теория парамагнетизма была разработана Полем Ланжевеном (Langevin P., 1872-1946) в 1905г. В упрощенном варианте (не слишком сильных магнитных полей и не слишком низких температур) суть теории Ланжевена сводится к следующему. В магнитном поле атом обладает потенциальной энергией W = - pmBcosθ, которая зависит от угла θ между векторами  и . Число атомов в единице объема, магнитные моменты которых направлены в пределах телесного угла dΩ=2πsinθdθ, определяется законом распределения Больцмана:

,

где А – нормирующий множитель, определяемый из условия

Эти атомы вносят вклад в проекцию вектора намагничивания на направление внешнего магнитного поля:

,

где обозначено  .

В принятом выше приближении x<<1 можно ограничиться первыми двумя членами в разложении  Тогда получим:

,

откуда следует выражение для магнитной восприимчивости парамагнетика:

.

Полученное выражение совпадает с законом Кюри, причем для постоянной Кюри С имеем: .

Пусть в среде, содержащей N атомов в единице объема, каждый атом имеет постоянный магнитный момент , а взаимодействия между магнитными моментами атомов нет. В отсутствие поля за счет энергии теплового движения магнитные моменты атомов ориентированы случайным образом и результирующая намагниченность равна нулю. При наложении внешнего поля все магнитные моменты ориентируются в направлении поля, но этой ориентации мешает тепловое движение

Энергию магнитного диполя в магнитном поле с индукцией найдем как

.

(7.20)

Эта энергия минимальна, если угол  между векторами равен нулю.

Вероятность ориентации магнитных моментов атомов под углом к вектору магнитной индукции в теории Ланжевена подчиняется распределению Больцмана

,

(7.21)

где .

Тогда среднее значение проекции магнитного момента на направление поля будет

,

(7.22)

где функция Ланжевена :

27) Ферромагнетики и антиферромагнетики :

ФЕРРОМАГНЕТИКИ - материалы, обладающие большой магнитной проницаемостью. К ним относятся: сталь, железо, никель, кобальт, их сплавы и др. Магнитные свойства веществ зависят от магнитных свойств элементарных носителей магнетизма -движущихся внутри атомов электронов, а также от совместного действия их групп. Ферромагнетики являются сильномагнитными веществами. Их намагниченность в огромное число раз превосходит намагниченность диа- и парамагнетиков, принадлежащих к категории слабомагнитных веществ. Кроме орбитальных моментов, электроны, вращаясь вокруг своих осей, создают еще спиновые моменты, которые играют важнейшую роль в намагничивании ферромагнетиков. В ферромагнетиках образуются отдельные самопроизвольные намагниченные области (от 10-2 до 10-6 см3, спиновые моменты которых ориентируются параллельно. Если ферромагнетик не находится во внешнем поле, то магнитные моменты отдельных областей разнонаправлены и суммарный магнитный момент тела равен нулю - ферромагнетик не намагничен. Внесение ферромагнетика во внешнее магнитное поле вызывает поворот магнитных моментов части областей в направлении внешнего поля и рост размеров тех областей, направления магнитных моментов которых близки к направлению внешнего поля. В результате ферромагнетик намагничивается.

Магнитная проницаемость ферромагнетика m = В/Н непостоянна и зависит от напряженности магнитного поля. При работе в цепях переменного магнитного поля происходит периодическое перемагничивание ферромагнетика.

Ферромагнетики подразделяют на магнитомягкие и магнитотвердые. Первые обладают малой коэрцитивной силой (напряженность поля, необходимая для изменения намагниченности тела до нуля) и остаточной намагниченностью (намагниченность в нулевом поле). Для вторых характерны большие значения коэрцитивной силы и остаточной намагниченности.

Магнитотвердые ферромагнетики служат в основном для изготовления постоянных магнитов. Магнитомягкие ферромагнетики используют в электротехнике (трансформаторы, электромоторы, генераторы и др.), в устройствах преобразования электромагнитной энергии в механическую и наоборот.

В некоторых случаях обменные силы приводят к возникновению так называемых антиферромагнетиков. В антиферромагнетиках спиновые моменты электронов самопроизвольно ориентированы антипараллельно друг другу. Такая ориентация охватывает попарно соседние атомы. В результате антиферромагнетик обладает очень малой магнитной восприимчивостью и ведут себя как слабые парамагнетик. Для антиферромагнетиков также существует температура, при которой антипараллельная ориентация спинов исчезает. Эта температура называет антиферромагнитной точкой Кюри или точкой Нееля. У некоторых антиферромагнетиков таких температур две (верхняя и нижняя точка), причём антиферромагнитные свойства наблюдаются только при промежуточных температурах. Выше верхней точки вещество ведет себя как парамагнетика при температурах, меньших нижней точки Нееля, становится ферромагнетиком.

28)Энергия магнитного поля :

Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы. Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Проводник, c протекающим по нему электрическим ток, всегда окружен магнитным полем, причем магнитное поле исчезает и появляется вместе с исчезновением и появлением тока. Магнитное поле, подобно электрическому, является носителем энергии. Логично предположить, что энергия магнитного поля совпадает с работой, затрачиваемой током на создание этого поля.

Рассмотрим контур индуктивностью L, по которому протекает ток I. С этим контуром сцеплен магнитный поток Ф=LI, поскольку индуктивность контура неизменна, то при изменении тока на dI магнитный поток изменяется на dФ=LdI. Но для изменения магнитного потока на величину dФ следует совершить работу dА=IdФ=LIdI. Тогда работа по созданию магнитного потока Ф равна



Значит, энергия магнитного поля, которое связано с контуром,

(1)

29)Нестационарные явления в теории электромагнетизма :


Как известно, электрические токи порождают вокруг себя магнитное поле. Связь магнитного поля с током дала толчок к многочисленным попыткам возбудить ток в контуре с помощью магнитного поля. Эта фундаментальное открытие было блестяще сделано в 1831 г. английским физиком М. Фарадеем, который открыл явление электромагнитной индукции. Оно говорит о том, что в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает электрический ток, получивший название индукционного.

Исследуя результаты своих многочисленных опытов, Фарадей открыл количественный закон электромагнитной индукции. Он показал, что всякий раз, когда в опыте осуществляется изменение сцепленного с контуром потока магнитной индукции, в контуре возникает индукционный ток; возникновение индукционного тока указывает на существование в цепи электродвижущей силы, которая называется электродвижущей силой электромагнитной индукции. Количественное значение индукционного тока, а значит, и э.д.с. электромагнитной индукции ξi задается только скоростью изменения магнитного потока, т. е.

(1)

На следующем шаге необходимо выяснить знак ξi . Знак магнитного потока задается выбором положительной нормали к контуру, а положительное направление нормали определяется правилом правого винта. Значит, выбирая положительное направление нормали, мы знаем как знак потока магнитной индукции, так и направление тока и э.д.с. в контуре. Пользуясь этими соображениями и выводами, можно прийти к формулировке закона электромагнитной индукции Фарадея: ЭДС прямо пропорциональна  скорости изменения потока электромагнитной индукции.  

(2)

Знак минус говорит о том, что увеличение потока (dФ/dt>0) вызывает э.д.с. ξi<0 т. е. направление поля индукционного тока навстречу потоку; уменьшение потока (dФ/dt<0) вызывает ξi>0 т.е. направления поля индукционного тока и потока совпадают. Знак минус в (2) задается правилом Ленца - общим правилом для нахождения направления индукционного тока, полученного в 1833 г.

Правило Ленца: индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшему этот индукционный ток.

30)Самоиндукция. Взаимная индукция. Индуктивность.

Электрический ток, который течет в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, согласно закону Био-Савара-Лапласа, пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому прямо пропорционален току I в контуре:

(1)

где коэффициент пропорциональности L называется индуктивностью контура.

Индуктивность. Способность различных проводников (катушек) индуцировать. Э. д. с. самоиндукции оценивается индуктивностью L. Она показывает, какая э. д. с. самоиндукции возникает в данном проводнике (катушке) при изменении тока на 1 А в течение 1 с

При изменении в контуре силы тока будет также изменяться и сцепленный с ним магнитный поток; значит, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией.

Из выражения (1) задается единица индуктивности генри (Гн): 1 Гн — индуктивность контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб: 1 Гн = 1 Вб/с = 1 В•c/А .

Вычислим индуктивность бесконечно длинного соленоида. Полный магнитный поток сквозь соленоид (потокосцепление) равен μ0μ(N2I/l)S . Подставив в (1), найдем

(2)

т. е. индуктивность соленоида зависит от длины l солениода, числа его витков N, его , площади S и магнитной проницаемости μ вещества, из которого изготовлен сердечник соленоида.

Доказано, что индуктивность контура зависит в общем случае только от геометрической формы контура, его размеров и магнитной проницаемости среды, в которой он расположен, и можно провести аналог индуктивности контура с электрической емкостью уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды.

Найдем, применяя к явлению самоиндукции закон Фарадея, что э.д.с. самоиндукции равна



Если контур не претерпевает деформаций и магнитная проницаемость среды остается неизменной (в дальнейшем будет показано, что последнее условие выполняется не всегда), то L = const и

(3)

где знак минус, определяемый правилом Ленца, говорит о том, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем. Если ток со временем увеличивается, то (dI/dt<0) и ξs>0 т. е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и замедляет его увеличение. Если ток со временем уменьшается, то (dI/dt>0) и ξs<0 т. е. индукционный ток имеет такое же направление, как и уменьшающийся ток в контуре, и замедляет его уменьшение. Значит, контур, обладая определенной индуктивностью, имеет электрическую инертность, заключающуюся в том, что любое изменение тока уменьшается тем сильнее, чем больше индуктивность контура.

31)Токи замыкания и размыкания цепи :

По правилу Ленца дополнительные токи, возникающие в проводниках вследствие самоиндукции, всегда направлены так, чтобы воспрепятствовать изменениям тока, текущего в цепи. Это приводит к тому, что установление тока при замыкании цепи и убывание тока при размыкании цепи происходит не мгновенно, а постепенно.

Сначала найдем характер изменения тока при размыкании цепи (рис. 3).   

Рис. 3

Пусть в цепь с независящей от I индуктивностью L и сопротивлением R включен источник тока, имеющий ЭДС . Под действием этой ЭДС в цепи будет течь постоянный ток:

.

В момент времени t=0 отключим ЭДС, переведем переключатель П в положение 2. Как только сила тока в цепи станет убывать возникает ЭДС самоиндукции. Закон Ома:

IR==L.

Перепишем это выражение следующим образом:

.

Это линейное однородное дифференциальное уравнение 1-го порядка. Его легко проинтегрировать, разделив переменные:

,

Откуда

 .

Потенцирование этого соотношения дает:

.

Это выражение является общим решением дифференциального уравнения первого порядка. При t=0, сила тока равна:

, следовательно, const = I0,

Тогда

 .

    Отсюда видно, что сила тока убывает по экспоненте (рис. 4).

Рассмотрим случай замыкания цепи. После подключения к источнику тока до тех пор, пока сила тока не примет установившегося значения, в цепи кроме ЭДС будет действовать ЭДС самоиндукции.

    В соответствии с законом Ома можно написать, что

IR=+=-L.

    После преобразования приходим к линейному неоднородному уравнению:

.

    Общее решение этого уравнения можно получить, прибавив любое его частное решение к общему решению однородного уравнения.

.

В момент времени t=0, I=0. Отсюда, для сonst получается значение сonst = -I0.

То есть , (см. рис. 4).

32)Вихревое электрическое поле. Токи Фуко. 

Возникающее при изменении магнитного поля электрическое поле имеет совсем другую структуру, чем электростатическое. Оно не связано непосредственно с электрическими зарядами, и его силовые линии не могутна них начинаться и кончаться. Они вообще ни где не начинаются и нигде не кончаются, представляя собой замкнутые линии, подобные силовым линиям магнитного поля. Это так называемое вихревое поле.

Второе уравнение Максвелла это закон Фарадея (на всех конденсаторах написано имя Майкла Фарадея) впервые в дифференциальной форме записан Максвеллом в качестве его третьего уравнения:

×E = – B/∂t 

где:

× – значок оператора ротора (вихря);

B/∂t – частная производная (изменение) B по времени. Частная в том смысле, что магнитное поле вообще меняется и в пространстве и во времени, но тут нас интересует только его изменение во времени.  

Это уравнение говорит, что ротор (интеграл по замкнутому контуру) электрического поля Е равен потоку (т.е. скорости изменения во времени) магнитного поля В сквозь этот контур. Это уравнение Максвела лежит в основе обозначения вихревого электрического поля.

Токи Фуко это токи, которые возникают в массивном проводнике, находящемся в переменном магнитном поле. Токи Фуко имеют вихревой характер. Если обычные индукционные токи движутся по тонкому замкнутому проводнику, то вихревые токи замыкаются внутри толщи массивного проводника. Хотя при этом они больше ничем не отличаются от обычных индукционных токов.

 Токи Фуко замыкаются в толще проводника в виде круговых контуров маленьких вихрей. Величина этих токов тем выше, чем выше скорость изменения магнитного потока. Это может быть переменное магнитное поле либо сам массивный проводник может, двигается в неизменном магнитном поле.

 Направление токов Фуко определяется по правилу Ленца также как и направление обычных токов возникших вследствие электромагнитной индукции. Они всегда направлены встречно потоку, вызвавшему их, и стремятся ему противодействовать.

Ток смещения.

Постоянный ток не протекает в цепи с конденсатором, а в случае переменного напряжения в цепи ток протекает через конденсатор. Для постоянного тока конденсатор – разрыв в цепи, а для переменного этого разрыва нет. Поэтому необходимо заключить, что между обкладками конденсатора происходит некоторый процесс, который как бы замыкает ток проводимости. Этот процесс между обкладками конденсатора был назван током смещения. Напряженность поля между обкладками конденсатора . Из граничного условия для вектора следует, что диэлектрическое смещение между обкладками , а сила тока в цепи равна . Тогда

, (25.1)

А значит процессом, замыкающим ток проводимости в цепи, является изменение электрического смещения во времени. Плотность тока

. (25.2)

Существование тока смещения было постулировано Максвеллом в 1864 г. и затем экспериментально подтверждено другими учеными.

Почему скорость изменения вектора смещения называется плотностью тока? Само по себе математическое равенство величины , характеризующей процесс между обкладками конденсатора, т. е. равенство двух величин, относящихся к разным областям пространства и имеющим различную физическую природу, не содержит в себе, вообще говоря, какого-то физического закона. Поэтому называть ”током” можно только формально. Для того чтобы придать этому названию физический смысл, необходимо доказать, что обладает наиболее характерными свойствами тока, хотя и не представляет движения электрических зарядов, подобного току проводимости.

По существу ток смещения – это изменяющееся со временем электрическое поле. Основанием для того, чтобы назвать эту величину током, служит лишь то, что размерность этой величины совпадает с размерностью плотности тока. Из всех физических свойств, присущих току проводимости, ток смещения обладает только одним – способностью создавать магнитное поле. Ток смещения имеется везде, где есть изменяющиеся со временем электрическое поле.  В частности он существует и внутри проводов по которым течет электрический ток, однако, в таком случае он бывает пренебрежительно мал.

Уравнение Максвелла с током смещения.

Порождение магнитного поля токами проводимости описывается уравнением

(25.3)

Учитывая порождение поля током смещения, необходимо обобщить это уравнение в виде

(25.4)

Тогда, принимая во внимание (25.2), окончательно получаем уравнение

, (25.5)  .Являющееся одним из уравнений Максвелла.

33)Электромагнитные волны как следствие из уравнений Максвела.

Энергия электромагнитной волны

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.

Максвелл высказал гипотезу о существовании и обратного процесса:

Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Эта гипотеза была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. е. систему уравнений электромагнитного поля (уравнений Максвелла). Из теории Максвелла вытекает ряд важных выводов:

1. Существуют электромагнитные волны, то есть распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис. 2.6.3).

Рисунок 2.6.3.

2. Электромагнитные волны распространяются в веществе с конечной скоростью

Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε0 и μ0 – электрическая и магнитная постоянные: ε0 = 8,85419·10–12 Ф/м, μ0 = 1,25664·10–6 Гн/м.

Скорость электромагнитных волн в вакууме (ε = μ = 1):

3. В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Поэтому объемные плотности электрической и магнитной энергии равны друг другу: wэ = wм.

4. Электромагнитные волны переносят энергию. Объемная плотность энергии электромагнитного поля в линейной изотропной среде равна сумме объемных плотностей энергии электрического и магнитного полей [см. Конспект лекций по физике, ч.II, формулы (5.17) и (11.17) соответственно], поэтому

(12)

С учетом соотношений (11) и (4) из (12) следует, что

, (13)

где v - скорость распространения электромагнитной волны в среде.

В случае плоской линейно поляризованной монохроматической волны (9) объемная плотность энергии волны

(14)

т.е значение w в каждой точке поля периодически изменяется от 0 до wмакс=Е0Н0/v за промежуток времени .

Среднее значение объемной плотности энергии волны

(15)

Умножив w [см.(13)] на v, получим величину плотности потока энергии

S=wv=EH . (16)

Т.к. векторы ,и взаимно перпендикулярны и образуют правую тройку векторов, то направление вектора совпадает с направлением переноса энергии - с направлением вектора . Поэтому (16) можно записать в векторной форме

. (17)

Вектор плотности потока энергии (иногда обозначают) направлен в сторону распространения электромагнитной волны, а его модуль равен энергии, переносимой волной за единицу времени, через единичную площадку, перпендикулярную направлению распространения волны [см. в параграфе 1.6 Рис.2 и формулы (17), (18)]. S измеряется в Дж/(см2)=Вт/м2.

Заметим, что в общем случае

, (18)

где u - скорость переноса энергии или групповая скорость.

Также это выражение служит для обозначение вектора Умова-Пойтинга.

5. Из теории Максвелла следует, что электромагнитные волны должны оказывать давление на поглощающее или отражающее тело. Давление электромагнитного излучения объясняется тем, что под действием электрического поля волны в веществе возникают слабые токи, то есть упорядоченное движение заряженных частиц. На эти токи действует сила Ампера со стороны магнитного поля волны, направленная в толщу вещества. Эта сила и создает результирующее давление. Обычно давление электромагнитного излучения ничтожно мало.

Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущ механический импульс. Импульс электромагнитного поля в единичном объеме выражается соотношением

где wэм – объемная плотность электромагнитной энергии, c – скорость распространения волн в вакууме. Наличие электромагнитного импульса позволяет ввести понятие электромагнитной массы.

Для поля в единичном объеме

Отсюда следует:

Это соотношение между массой и энергией электромагнитного поля в единичном объеме является универсальным законом природы. Согласно специальной теории относительности, оно справедливо для любых тел независимо от их природы и внутреннего строения.

6. Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. В современной радиотехнике излучение электромагнитных волн производится с помощью антенн различных конструкций, в которых возбуждаются быстропеременные токи.

34)Предмет оптики. Геометрическая оптика.

Оптика — раздел физики, в котором изучаются оптическое излучение (свет), его распространение и явления, наблюдаемые при взаимодействии света и вещества.

Оптическое излучение представляет собой электромагнитные волны и поэтому оптика — часть общего учения об электромагнитном поле. Длины волн оптического излучения заключены в диапазоне с условными границами от единиц нанометров до десятых долей миллиметра (диапазон частот 3×1017 – 3×1011 Гц). К оптическому излучению помимо воспринимаемого человеческим глазом видимого излучения (обычно называемого светом) относятся инфракрасное излучение и УФ-излучение. Оптический диапазон длин волн l охватывает около 20 октав и, следовательно, ограничен с одной стороны рентгеновскими лучами, а с другой — микроволновым диапазоном радиоизлучения.

Такое ограничение условно и в значительной степени определяется общностью технических средств и методов исследования явлений в указанном диапазоне.

Для оптических методов исследования характерно формирование направленных потоков оптического излучения с помощью оптических систем, формирование оптических изображений предметов с помощью приборов, линейные размеры которых много больше длины волны l излучения.

В оптическом диапазоне отчетливо проявляются одновременно и волновые и корпускулярные свойства электромагнитного излучения. Волновые свойства оптического излучения позволяют дать объяснение явлениям дифракции, интерференции, поляризации. В то же время процессы фотоэлектрической эмиссии, тепловое излучение невозможно понять, не привлекая представлений об оптическом излучении как о потоке частиц-фотонов. Эта двойственность природы оптического излучения находит общее объяснение в квантовой механике.

Свойство которое характеризует свет в одних случаях, как электромагнитную волну, а в других – как поток особых частиц, называется корпускулярно-волновым дуализмом.

Виды оптического излучения классифицируются по следующим признакам:

  1. По природе возникновения — тепловое, люминесцентное, синхротронное.
  2. По особенностям испускания атомов и молекул — спонтанное и вынужденное.
  3. По степени однородности спектрального состава — монохроматическое, немонохроматическое.
  4. По степени пространственной и временной когерентности.
  5. Упорядоченности ориентации векторов и естественное, поляризованное линейно, по кругу, эллиптически поляризованное.

По традиций оптику принято подразделять на геометрическую, физическую, физиологическую.

Геометрическая оптика не рассматривает вопрос о природе света, а исходит из эмпирических законов его распространения. Здесь используется представление о световых лучах, которые преломляются и отражаются на границах сред с разными оптическими свойствами и прямолинейных в оптически однородной среде.

Методы геометрической оптики позволяют изучать условия формирования оптического изображения объекта как совокупность изображений отдельных его точек и объяснить многие явления, связанные с прохождением оптического излучения в различных средах, в том числе неоднородных (например, искривление лучей в земной атмосфере вследствие непостоянства ее показателя преломления — миражи, радуга).

Наибольшее значение геометрическая оптика с частичным привлечением волновой оптики имеет для расчета и конструирования оптических приборов, от очковых линз до сложных объективов и огромных астрономических инструментов. Благодаря развитию и вычислительной математики и применению современной вычислительной техники такие расчеты достигли высокого совершенства, и сформировалось отдельное направление, получившее название вычислительной оптики

Формула тонкой линзы

Формула тонкой линзы связывает d (расстояние от предмета до оптического центра линзы), f (расстояние от оптического центра до изображения) с фокусным расстоянием F

Треугольник АВО подобен треугольнику OB1A1. Из подобия следует, что

Треугольник OCF подобен треугольнику FB1A1. Из подобия следует, что

При падении световой волны на плоскую границу раздела двух оптически прозрачных диэлектриков волна испытывает отражение от границы раздела (волна возвращается в ту среду, из которой падала) и преломление (уходит во вторую среду). Таким образом, на границе раздела двух сред выполняются законы отражения и преломления света (рис. 3.1).


Рис. 3.1.
Явление полного внутреннего отражения 

При

.

(3.1)

Явление полного внутреннего отражения заключается в том, что преломленная волна отсутствует. Это возможно только тогда, когда .

Пусть , тогда из (1) , или . Но так как углы и меняются в пределах от 0 до , то . И угол всегда! Другими словами, преломленная волна всегда существует.

Пусть , тогда из (1) , или , или . Тогда при некотором значении примет значение и из (1) получим:

.

(3.2)

Это и есть закон полного внутреннего отражения. Он означает, что для всех углов падения , больших , свет во вторую среду не преломится, а полностью отразится.

Преломление света – это  изменение направления распространения света при прохождении через границу раздела двух сред.

Преломление света происходит по следующему закону:


Падающий и преломленный лучи и перпендикуляр, проведенный к границе раздела двух сред в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред:


,


где
α — угол падения,


β — угол преломления,


n — постоянная величина, не зависящая от угла падения.

При изменении угла падения изменяется и угол преломления. Чем больше угол падения,

тем больше угол преломления.


Если свет идет из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения:
β < α.


Луч света, направленный перпендикулярно к границе раздела двух сред, проходит из одной среды в другую
без преломления. 

Показатель преломления света делится на :

  1. Абсолютный— величина равная отношению скорости света в вакууме к фазовой скорости света в данной среде: . Зависит от химического состава среды, ее состояния (температуры, давления и т.п.) и частоты света (см. дисперсия света).
    2) Относительный — (Показатель преломления  второй среды относительно первой) величина равная отношению фазовой скорости в первой среде к фазовой скорости во второй: . Показатель преломления равен отношению абсолютного показателя преломления второй среды к абсолютному показателю преломления перовой среды .

35)Интерференция световых волн :

Интерференцией световых волн называется сложение двух когерентных волн, вследствие которого наблюдается усиление или ослабление результирующих световых колебаний в различных точках пространства.

Условия интерференции

Волны должны быть когерентны. Когерентность - согласованность. В простейшем случае когерентными являются волны одинаковой длины, между которыми существует постоянная разность фаз

Свойства когренетности :

  1.  Одинаковая частота
  2.  Одинаковая разность фаз во всех точках световых волн
  3.  Вектора напряженности электрического поля в идущих волнах двигаются параллельно друг другу.

Условие максимума.

Пусть разность хода между двумя точками ,

тогда условие максимума: , 

т. е. на разности хода волн укладывается четное число полуволн (k= 1, 2, 3, ...).

Условие минимума

Пусть разность хода между двумя точками ,

тогда условие минимума: ,

т. е. на разности хода волн укладывается нечетное число полуволн (k= 1, 2, 3, ...).

Расстояние между двумя соседними максимумами интенсивности или между двумя соседними минимумами называют шириной интерференционной полосы

Одной из важных характеристик наблюдаемой интерференционной картины является видность V, которая характеризует контраст интерференционных полос.

По определению

(1.3)

где и – соответственно максимальное и минимальное значения интенсивности в интерференционной картине и равны :

 , ; где – a1 и a2 – амплитуды колебаний световых волн.

При интерференции монохроматических волн видность V зависит только от соотношения интенсивностей интерферирующих пучков света и выражается формулой:

36)Опыт Юнга. Зеркала Френеля.

Первым интерференционным опытом, получившим объяснение на основе волновой теории света, явился опыт Юнга (1802 г.). В опыте Юнга свет от источника, в качестве которого служила узкая щель S, падал на экран с двумя близко расположенными щелями S1 и S2 (рис. 3.7.3). Проходя через каждую из щелей, световой пучок уширялся вследствие дифракции, поэтому на белом экране Э световые пучки, прошедшие через щели S1 и S2, перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.

Юнг был первым, кто понял, что нельзя наблюдать интерференцию при сложении волн от двух независимых источников. Поэтому в его опыте щели S1 и S2, которые в соответствии с принципом Гюйгенса можно рассматривать как источники вторичных волн, освещались светом одного источника S. При симметричном расположении щелей вторичные волны, испускаемые источниками S1 и S2, находятся в фазе, но эти волны проходят до точки наблюдения P разные расстояния r1 и r2. Следовательно, фазы колебаний, создаваемых волнами от источников S1 и S2 в точке P, вообще говоря, различны. Таким образом, задача об интерференции волн сводится к задаче о сложении колебаний одной и той же частоты, но с разными фазами. Утверждение о том, что волны от источников S1 и S2 распространяются независимо друг от друга, а в точке наблюдения они просто складываются, является опытным фактом и носит название принципа суперпозиции.

Зеркала Френеля.

 Другой интерференционный опыт, аналогичный опыту Юнга, но в меньшей степени осложненный явлениями дифракции и более светосильный, был осуществлен О. Френелем в 1816 г. Две когерентные световые волны получаются в результате отражения от двух зеркал М и N, плоскости которых наклонены под небольшим углом φ друг к другу (рис. 8.4).

Источником служит узкая ярко освещенная щель S, параллельная ребру между зеркалами. Отраженные от зеркал пучки падают на экран, и в той области, где они перекрываются ,возникает интерференционная картина. От прямого попадания лучей от источника S экран защищен ширмой . Для расчета освещенности J экрана можно считать, что интерферирующие волны испускаются вторичными источниками S1 и S2 , представляющими собой мнимые изображения щели S в зеркалах. Поэтому J будет определяться формулой двулучевой интерференции, в которой расстояние l от источников до экрана следует заменить на , где  - расстояние от S до ребра зеркал, b - расстояние от ребра до экрана Расстояние d между вторичными источниками равно: . Поэтому ширина интерференционной полосы на экране равна:

.

37)Интерференция в тонких плёнках.

При падении световой волны на тонкую прозрачную плёнку или пластинку происходит отражение от обеих поверхностей пленки. В результате возникают две световые волны, которые при известных условиях могут инерферировать.

Пусть на прозрачную плоскопараллельную пластинку падает плоская световая волна, которую можно рассмотреть как параллельный пучок лучей. На рисунки изображен один из лучей этого пучка. Пластинка отбрасывает вверх два параллельных пучка света, один из которых образуется за счёт отражения от верхней поверхности пластинки, другой – вследствие отражения от нижней поверхности. При входе в пластинку и при выходе из нее второй пучок претерпевает преломление. Коэффициент отражения на границах воздух - пластинка и пластинка – воздух одинаков и для стекла, равен примерно 5%. Поэтому интенсивность обоих отраженных пучков практически одинакова. Кроме пучков 1 и 2 пластинка отбросит вверх пучки, возникающие в результате трех-, пяти-, и т.д кратного отражения от поверхности пластинки. Однако ввиду малой интенсивности эти пучки можно не принимать во внимание. Если оптическая разность хода лучей 1 и 2 будет существенно меньше длины когерентности исходной волны, то волны, представленные этими лучами, будут когерентными и смогут интерферировать. На дальнейшем пути лучей от точек A и B разность фаз волн 1 и 2 не изменяется. Поэтому оптическая разность хода лучей 1 и 2 :

=ns2 – s1

S1 – длинна отрезка OA, s2 – суммарная длина отрезков OC и CB, n – показатель преломления пластинки.

Полосы равного наклона

Пусть тонкая плоскопараллельная пластинка освещается рассеянным квазимонохроматическим светом. Расположим параллельно пластинке линзу, в фокальной плоскости которой поместим экран. В рассеянном свете имеются лучи самых разнообразных направлений. Лучи, параллельные плоскости рисунка и падающие на пластинку под углом , после отражения от поверхности пластинки, соберутся линзой в точке P  и создадут в этой точке освещенность, определяемую значением оптической разности хода. Лучи, идущие в других плоскостях, но падающие на пластинку под тем же углом , соберутся линзой в других точках, отстоящих от центра экрана O на такое же расстояние, как и точка P. Освещенность во всех этих точках будет одинакова. Таким образом, лучи, падающие на пластинку под одинаковым углом, создадут на экране совокупность одинаково освещенных точек, расположенных по окружности с центром в O. Аналогично лучи, падающие под другим углом, создадут на экране совокупность одинаково освещенных точек, расположенных по окружности другого радиуса. В результате на экране возникнет система чередующихся светлых и темных круглых полос с общим центром в точке O. Каждые расположены под одинаковым углом. Эти полосы называются полосами равного наклона.

Полосы равной толщины

Рассмотрим пластинку в виде клина с углом при вершине ФИ. Пусть на нее падает параллельный пучок лучей. Теперь лучи, отразившиеся от разных поверхностей пластинки, не будут параллельными. Они пересекаются в точках B, B” и т.д. Можно показать, что эти и другие аналогичные им точки лежат в одной плоскости, проходящей через вершину клина O. При малом угле клина ФИ разность хода лучей можно с достаточной точностью вычислять по формуле : =ns2 – s1, беря в качестве b толщину пластинки в месте падения на нее лучей. Поскольку разность хода лучей, отразившихся от различных участков клина, теперь неодинакова, освещенность экрана будет неравномерной – на экране появятся светлые и тёмные полосы. Каждая из таких полос возникает в результате отражения от участков клина с одинаковой толщиной, вследствие этого их называют полосами равной толщины.

Кольца Ньютона

Классическим примером полос равной толщины являются кольца Ньютона. Они наблюдаются при отражении света от соприкасающихся друг с другом плоскопараллельной стеклянной пластинки и плоско-выпуклой линзы с большим радиусом кривизны (рис. 2.15). Роль тонкой пленки, от поверхности которой отражаются волны, играет воздушный зазор между пластинкой и линзой (вследствие большой толщины пластинки и линзы за счет отражений от других поверхностей интерференционные полосы не возникают). При нормальном падении света полосы равной толщины имеют вид окружностей, при наклонном – эллипсов.

Найдем радиусы колец Ньютона, получающихся при падении света по нормали к пластинке. В этом случае  и  . Из рис. видно, что ,

где  – радиус кривизны линзы,  – радиус окружности, всем точкам которой соответствует одинаковый зазор .

Величиной  можно пренебречь, тогда . Чтобы учесть возникающее при отражении от пластинки изменение фазы на p, нужно добавить к разности хода :

.

(2.17)

В точках, для которых , возникнут максимумы интенсивности, а в точках, для которых  – минимумы интенсивности.

Оба условия можно объединить в одно:

,

(2.18)

четным  будут соответствовать максимумы, а нечетным – минимумы интенсивности. Подставив (2.18) в (2.17), получим радиусы темных и светлых колец Ньютона:

.

(2.19)

Четным  соответствуют радиусы светлых колец, нечетным  – радиусы темных колец. Значению  соответствует , то есть в месте касания пластинки и линзы наблюдается минимум интенсивности, обусловленный изменением фазы на p при отражении световой волны от пластинки.

38)Дифракция света.

Дифракцией называется совокупность явления, наблюдаемых при распространении света в среде с резкими неоднородностями ( вблизи границ непрозрачных или прозрачных тел, сквозь малые отверстия ) и связанных с отклонениями от законов геометрической оптики. Дифракция ,  в частности , приводит к огибанию световыми волнами препятствий и проникновению света в область геометрической тени. Между интерференцией и дифракцией не существует физического различия. Оба явления заключаются в перераспределении светового потока в результате суперпозиции волн. Перераспределение интенсивности , возникающее вследствие суперпозиции волн, возбуждаемых когерентными источниками , расположенным непрерывно, принято называть дифракцией волн.

Принцип Гюйгенса

     Согласно принципу Гюйгенса каждая точка среды, до которой дошло возмущение, сама становится источником вторичных волн. Для того чтобы, зная положение волновой поверхности в момент времени t, найти ее положение в следующий момент времени t+t, нужно каждую точку волновой поверхности рассматривать как источник вторичных волн. Поверхность, касательная ко всем вторичным волнам, представляет собой волновую поверхность в следующий момент времени (рис.3). Этот принцип в равной мере пригоден для описания распространения волн любой природы: механических, световых и т. д. Гюйгенс сформулировал его первоначально именно для световых волн.

  Для механических волн принцип Гюйгенса имеет наглядное истолкование: частицы среды, до которых доходят колебания, в свою очередь, колеблясь, приводят в движение соседние частицы среды, с которыми они взаимодействуют.

Зоны Френеля.

Френель решил задачу нахождения амплитуды в т. Р, заменив интегрирование суммированием, т.е. перешёл от непрерывных сумм () к дискретным (Σ).


Точечный источник
S создаёт сферическую волну. Требуется определить амплитуду колебаний волны в т. Р. Волновая поверхность в некоторой точке О  будет представлять сферу. Френель предложил разбить ее на кольцевые зоны (секторы) так, что расстояния от краев каждой зоны до т. Р отличается на λ/2. Построенные таким образом сектора сферы называются зонами Френеля.

Волны, приходящие в т. Р от аналогичных точек двух соседних зон имеют противоположные фазы, т.к. разность хода между этими волнами равна λ/2.

При не слишком больших m (m – номер зоны), площади зон Френеля примерно равны S1= S2 =Sm.  С ростом номера зоны m увеличивается расстояние bm, от зоны до т. Р и угол φ между нормаль. к элементам зоны и направлением на т. Р. Тогда по формуле (1) амплитуда Am колебания, возбуждаемогоm -й-зоной в т. Р, монотонно убывает

А1 >A2 >A3 >Am >…>A.

Т.к. волны от двух соседних зон приходят в т. Р в противофазе, они ослабляют друг друга и тогда результирующая амплитуда в т. Р равна

Арез = А1 -A2 +A3 –A4+… 

Т.к. Am монотонно убывает, то можно считать

и Арез можно записать в виде

Если фронт волны полностью открыт, то число зон m → ∞ и

Амплитуда, создаваемая в некоторой точке Р всей сферической волновой поверхностью, равна половине амплитуды первой зоны. Следовательно, распространение света от S к Р происходит так, будто световой поток распространяется внутри очень узкого канала вдоль линии . т. е. прямолинейно. Если на пути световых волн поставить экран с отверстием, в котором укладывается четное число зон Френеля, то в т. Р будет минимум – ослабление света. Если в отверстии укладывается нечетное число зон Френеля, то в т. Р будет максимум - усиление света

Если точечный источник света находится на конечном расстоянии, то на препятствие падает сферически расходящаяся волна. В этом случае геометрия задачи несколько усложняется, так как теперь зоны Френеля нужно строить не на плоской, а на сферической поверхности .Расчет приводит к следующему выражению для радиусов ρm зон Френеля на сферическом фронте волны:

39) Дифракция Френеля на круглом отверстии:

Сферическая волна, распространяющаяся из точечного источника , встречает на своем пути экран с круглым отверстием. Дифракционная картина наблюдается на экране в точке . Разобьем часть волновой поверхности на зоны Френеля. Вид дифракционной картины будет зависеть от количества зон Френеля, укладывающихся в отверстии. Амплитуда результирующего колебания в точке равна: (плюс для нечетных , минус – для четных). Дифракционная картина от круглого отверстия вблизи точки будет иметь вид чередующихся светлых и темных колец.

Дифракция Френеля на диске:

Сферическая волна, распространяющаяся из точечного источника , встречает на своем пути диск. Дифракционная картина наблюдается на экране в точке . Пусть диск закрывает первых зон Френеля. Тогда амплитуда результирующего колебания в точке равна: . Т.к. слагаемое в скобках равно 0, то . Следовательно, в точке всегда будет светлое пятно, окруженное концентрическими светлыми и темными кольцами, а интенсивность убывает с расстоянием от центров картины.

Дифракция Фраунгофера



До сих пор
 мы имели дело c дифракцией в расходящихся лучах сферической волны. С практической и теоретической точек зрения очень важно рассмотреть случай дифракции в параллельных лучах (плоская волна). Этот вид дифракции был изучен немецким физиком И.Фраунгофером. Поэтому дифракция в параллельных лучах получила название дифракции Фраунгофера.

Дифракция Фраунгофера наблюдается в том случае, когда источник света и точка наблюдения бесконечно удалены от препятствия, вызывающего дифракцию. Чтобы этот тип дифракции осуществить
 на практике, достаточно источник света поместить в фокусе собирающей линзы, а дифракционную картину наблюдать в фокальной плоскости второй собирающей линзы, установленной за препятствием. При прохождении света через отверстие неизменной формы и размеров результат дифракции Фраунгофера изменяется только в зависимости от изменения спектрального состава излучения, даваемого источником S0 . Поэтому дифракционные явления в параллельных лучах могут использоваться для спектрального анализа излучения исследуемых веществ. Этим не ограничивается практическая важность дифракции Фраунгофера. Дело в том, что дифракционная картина возникает всегда, когда световой пучок ограничивается отверстием, поэтому теорию дифракции следует применять при изучении действия оптических приборов.

40)Дифракция Фраунгофера от щели :

Пусть на очень длинную узкую прямоугольную щель ширины b падает по нормали к ней плоская световая волна. Поместим за щелью собирающую линзу, а в фокальной плоскости линзы экран. Волновые поверхности падающей волны, плоскость щели и экран параллельны друг другу. Согласно принципу Гюйгенса – Френеля элементарные участки открытой части волновой поверхности являются источниками вторичных волн. Разобьем открытую часть волновой поверхности на N параллельных краям щели элементарных зон ширины b/N. Каждая зона создаёт в точке P колебание , амплитуда которого, очевидно, обратно пропорциональна число зон N :

A=A0/N

Линза собирает в фокальной плоскости плоские волны. Поэтому множитель 1/r будет отсутствовать в  формуле расчёта амплитуды. Разность хода лучей, идущих от краёв щели, равна :

Поскольку мы имеем дело с многолучевой интерференцией, то формула для расчёта амплитуды будет таковой :

Поскольку интенсивность света равна квадрату амплитуды, то :

Дифракционной решеткой называется оптический прибор, состоящий из большого числа одинаковых, отстоящих друг от друга на одно и то же расстояние щелей. Расстояние d между серединами соседних щелей называется периодом решетки.

Расположим параллельно решетке собирающую линзу, в фокальной плоскости которой поместим экран. Выясним характер дифракционной картины, получающейся на экране при падении на решетку плоской световой волны. Каждая из щелей даёт на экране картину. Картины от всех щелей придутся на одно и то же место экрана. Если бы колебания, приходящие в точку P экрана от различных щелей , были некогерентными , результирующая картина от N щелей отличалась бы от картины, создаваемой одной щелью, лишь тем, что интенсивность всех максимумов возросла бы в N раз. Мы предполагаем, что длина пространственной когерентности падающей волны намного превышает длину решетки, так что колебания от всех щелей можно считать когерентными.

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция. Т.к. щели находятся друг от друга на одинаковых расстояниях, то разности хода лучей, идущих от двух соседних щелей, будут для данного направления φ одинаковы в пределах всей дифракционной решетки.

b -ширина щели;

а - ширина непрозрачного участка;                                         (1)

В направлениях, в которых наблюдается минимум для одной щели, будут минимумы и в случае N щелей, т.е. условие главных минимумов дифракционной решетки будет аналогично условию минимумов для щели:

                                               (2)

- условие главных минимумов.

Условие максимумов; те случаи φ, которые удовлетворяют максимумам для одной щели, могут быть либо максимумами, либо минимумами, т.к. всё зависит от разности хода между лучами. Условие главных максимумов:

                                                (3)

Эти максимумы будут расположены симметрично относительно центрального (нулевого k = 0) максимума.

Условия для добавочных минимумов имеет вид:

 ,   где .

Количество щелей определяет световой поток через решетку. Чем их больше, тем большая энергия переносится волной через нее. Кроме того, чем больше число щелей, тем больше дополнительных минимумов помещается между соседними максимумами. Следовательно, максимумы будут более узкими и более интенсивными (рис. 9.8).

Угловая ширина главных максимумов обратно пропорциональна длине дифракционной решетки Nd и возрастает с увеличением порядка максимума.

Для m – го главного максимума угловая ширина равна :

41)Характеристики спектральных приборов.

Угловая дисперсия.

Угловой дисперсией спектральных приборов принято называть величину

(3.6)

В случае решетки, как следует из (3.3), угловая дисперсия равна

(3.7)

Приближенное выражение справедливо в случае малых дифракционных углов.

Линейной дисперсией спектрографа называется величина dl/d . Она определяет линейное расстояние в фокальной плоскости прибора, приходящееся на единичный спектральный интервал, и измеряется в мм/Å. Линейная дисперсия связана с угловой соотношением:

где l - расстояние вдоль экрана наблюдения, δl - расстояние между линиями на экране.

Разрешающей способностью спектрального прибора принято называть отношение

(3.9)

где – минимальный интервал между двумя близкими спектральными линиями, при котором они могут быть разрешены, то есть отделены одна от другой. В качестве критерия разрешения используется обычно критерий разрешения Рэлея. Спектральные линии с близкими значениями и считаются разрешенными, если главный максимум дифракционной картины для одной спектральной линии совпадает по своему положению с первым дифракционным минимумом для другой спектральной линии. Рис. 3.4. поясняет критерий Рэлея.

Рисунок 3.4.

Так как спектральные линии, изображенные на рис. 3.4, некогерентны, результирующая интенсивность равна сумме интенсивностей (сплошная кривая на рис. 3.4). Наличие провала в центре кривой распределения интенсивности указывает на условный характер критерия Рэлея.

Для разрешающей способности дифракционной решетки легко получить из выражения (3.3):

Если мы наблюдаем два близких источника света, их размытые образы накладываются один на другой. Рэлей как раз и показал, что если центральное световое пятно дифракционной картины одного источника света удалено от центрального светового пятна другого источника света на расстояние не менее радиуса первой темной дифракционной полосы, то мы начинаем воспринимать два источника света раздельно: это расстояние называется линейным разрешением оптического прибора. Если два источника света удалены друг от друга на расстояние d, расстояние от них до нас равно D, длина световой волны равна λ, а диаметр окуляра равен А, то, согласно критерию Рэлея, условием оптического разрешения двух источников в окуляре будет:

    d/D > 1,22 λ/A

Иными словами, если точечные источники света разнесены на расстояние не меньше d, наблюдатель, находясь на удалении D, сможет различить их в окуляре диаметром А как раздельные, в противном случае они сольются. Отношение d/D представляет собой угловую меру в радианах (для перевода в градусы нужно умножить ее на 57,3) между направлениями на два источника света. Критерий Рэлея, таким образом, устанавливает границы углового разрешения для любого оптического инструмента, будь то телескоп, фотоаппарат или человеческий глаз. (Коэффициент 1,22 определен математически и требует, чтобы размер окуляра и длина световой волны были измерены в одних и тех же единицах.)

42)Поляризация света :

Естественный и поляризованный свет.

Естественный и поляризованный свет. Электромагнитная волна является поперечной. Колебания вектора напряженности электрического поля и вектора индукции магнитного поля в электромагнитной волне происходят в перпендикулярных к направлению распространения волны плоскостях. Направление вектора напряженности электрического поля определяет тип поляризации световой волны.

Если колебания вектора  происходят в одной плоскости, такая волна называется плоскополяризованной или линейнополяризованной .Плоскость, проходящая через вектор  и направление распространения волны, называется плоскостью колебаний.

Если конец вектора  в плоскости, перпендикулярной к направлению распространения волны, описывает эллипс или окружность, то свет соответственно называется эллиптически поляризованным или поляризованным по кругу.

Если конец вектора  в плоскости, перпендикулярной к направлению распространения волны, совершает беспорядочные колебания, то есть плоскость колебаний постоянно и беспорядочно меняется, то свет называется естественным или неполяризованным. Условно это можно изобразить так, как показано на рисунке, где стрелками показано направление колебаний вектора .

Как правило, естественные источники света (солнце, пламя свечи, электрическая лампа) излучают именно такие, неполяризованные электромагнитные волны. Излучение таких источников представлено в каждый момент времени из световых волн от огромного числа независимо излучающих атомов с различной поляризацией. Каждый атом излучает плоскополяpизованные волны, но плоскости их колебаний никак не согласованы между собой. Поэтому в результирующей волне вектор напряженности электрического поля беспорядочно изменяет свою ориентацию во времени, так что в среднем все направления колебаний оказываются равноправными.

Наконец, можно создать частично поляризованный свет, в котором не все плоскости колебаний одинаково представлены, а имеется некоторое преимущественное направление колебаний вектора  Из рисунка видно, что вертикальные колебания соответствуют максимальной интенсивности , горизонтальные – минимальной . Частично поляризованный свет характеризуют степенью поляризации , которую определяют как

.

Для плоскополяризованного света ; для естественного света ; для эллиптически поляризованного света понятие «степень поляризации» неприменимо.

В каждый момент времени вектор  может быть спроектирован на две взаимно перпендикулярные оси

.

Это означает, что любую волну (поляризованную и неполяризованную) можно представить как суперпозицию двух плоскополяризованных во взаимно перпендикулярных направлениях волн. Но в поляризованной волне составляющие  и  когерентны, т.е. имеют постоянную разность фаз, а в неполяризованной – некогерентны, то есть разность фаз случайно меняется со временем.

Естественный свет можно преобразовать в плоскополяризованный, используя так называемые поляризаторы, пропускающие колебания только определенного направления (например, пропускающие колебания, параллельные главной плоскости поляризатора, и полностью задерживающие колебания, перпендикулярные этой плоскости). В качестве поляризаторов могут быть использованы среды, анизотропные в отношении колебаний вектора Е, например кристаллы (их анизотропия известна, см. § 70). Из природных кристаллов, давно используемых в качестве поляризатора, следует от метить турмалин.

Рассмотрим классические опыты с турмалином (рис. 273).

Рис. 273

 

Направим естественный свет перпендикулярно пластинке турмалина Т1, вырезанной параллельно так называемой оптической оси ОО' (см. § 192). Вращая кристалл Т1 вокруг направления луча, никаких изменении интенсивности прошедшего через турмалин света не наблюдаем. Если на пути луча поставить вторую пластинку турмалина Т2 и вращать ее вокруг направления луча, то интенсивность света, прошедшего через пластинки, меняется в зависимости от угла а между оптическими осями кристаллов по закону Малюса2*:

    (190.1)

где I0 и I - соответственно интенсивности света, падающего на второй кристалл и вышедшего из него. Следовательно, интенсивность прошедшего через пластинки света изменяется от минимума (полное гашение света) при  = /2 (оптические оси пластинок перпендикулярны) до максимума при  = 0 (оптические оси пластинок параллельны).

Результаты опытов с кристаллами турмалина объясняются довольно просто, если исходить из изложенных выше условий пропускания света поляризатором. Первая пластинка турмалина пропускает колебания только определенного направления (на рис. 273 это направление показано стрелкой AB), т. е. преобразует естественный свет в плоскополяризованный. Вторая же пластинка турмалина в зависимости от ее ориентации из поляризованного света пропускает большую или меньшую его часть, которая соответствует компоненту Е, параллельному оси второго турмалина. На рис. 273 обе пластинки расположены так, что направления пропускаемых ими колебаний АВ и А'В' перпендикулярны друг другу. В данном случае T1 пропускает колебания, направленные по АВ, a T2 их полностью гасит, т. е. за вторую пластинку турмалина свет не проходит.

Пластинка Т1, преобразующая естественный свет в плоскополяризованный, является поляризатором. Пластинка Т2, служащая для анализа степени поляризации света, называется анализатором. Обе пластинки совершенно одинаковы (их можно поменять местами). Если же и анализатор расположить положительно поляризатору, то интенсивность света не изменится.

Если пропустить естественный свет через два поляризатора, главные плоскости которых образуют угол а, то из первого выйдет плоскополяризованный свет, интенсивность которого I0 = 1/2Iест из второго, согласно (190.1), выйдет свет интенсивностью I = I0cos2. Следовательно, интенсивность света, прошедшего через два поляризатора,

 

откуда Imax = 1/2 Iест (поляризаторы параллельны) и Imin = 0 (поляризаторы скрещены).

Закон Брюстера.

Если угол падения света на границу раздела двух прозрачных диэлектриков (например, на поверхность стеклянной пластинки) отличен от нуля, то отраженный и преломленный лучи оказываются частично поляризованными. В отраженном луче преобладают колебания, перпендикулярные к плоскости падения (плоскость рисунка). В преломленном луче - колебания, параллельные плоскости падения (см.рис.5). Поляризацию объясняет электромагнитная теория Максвелла.

Закон Брюстера: Отраженный свет полностью линейно поляризован при угле падения Бр , удовлетворяющем условию

tg Бр=n2/n1 (7)

При этом преломленный свет поляризован не полностью и угол между отраженным и преломленным лучами равен 90.

ФРЕНЕЛЯ ФОРМУЛЫ - определяют отношения амплитуды, фазы и состояния поляризации отражённой и преломлённой световых волн, возникающих при прохождении света через границу раздела двух прозрачных диэлектриков, к соответствующим характеристикам падающей волны. Установлены О. Ж. Френелем в 1823 на основе представлений об упругих поперечных колебаниях эфира. Однако те же самые соотношения - Ф. ф.- следуют в результате строгого вывода из эл--магн. теории света при решении ур-ний Максвелла.

Пусть плоская световая волна падает на границу раздела двух сред с показателями преломления п1 и п2 (рис.). Углы j, j' и j'' есть соответственно углы падения, отражения и преломления, причём всегда n1 sinj=n2sinj'' (закон преломления) и |j|=|j'| (закон отражения). Амплитуду электрического вектора падающей волны А разложим на составляющую с амплитудой Ар, параллельную плоскости падения, и составляющую с амплитудой As, перпендикулярную плоскости падения. Аналогично разложим амплитуды отражённой волны R на составляющие Rp и Rs, а преломлённой волны D - на Dp и Ds (на рис. показаны только р-составляющие). Ф. ф. для этих амплитуд имеют вид

43)Двойное лучепреломление.

Почти все прозрачные диэлектрики оптически анизотропны, то есть свойства света при прохождении через них зависят от направления. Физическая природа анизотропии связана с особенностями строения молекул диэлектрика или особенностями кристаллической решетки, в узлах которой находятся атомы или ионы.

Вследствие анизотропии кристаллов при прохождении через них света возникает явление, называемое двойным лучепреломлением. Оно заключается в том, что свет, падающий на кристалл, преломляясь, создает не один преломленный луч, как в изотропных средах, а два, идущие в общем случае в различных направлениях и с разными скоростями.

Мы остановимся на так называемых одноосных кристаллах. У одноосных кристаллов один из преломленных пучков подчиняется обычному закону преломления. Его называют обыкновенным. Другой пучок называется необыкновенным, он не подчиняется обычному закону преломления. Даже при нормальном падении светового пучка на поверхность кристалла необыкновенный луч может отклоняться от нормали. Как правило, необыкновенный луч не лежит в плоскости падения. Если через такой кристалл посмотреть на окружающие предметы, то каждый предмет будет раздваиваться. При вращении кристалла вокруг направления падающего луча обыкновенный луч остается неподвижным, а необыкновенный будет двигаться вокруг него по окружности.

К одноосным кристаллам относятся, например, кристаллы кальцита или исландского шпата (). Кристалл исландского шпата представляет собой разновидность кальцита, который кристаллизуется в виде ромбоэдра. В одноосных кристаллах существует выделенное направление, вдоль которого обыкновенная и необыкновенная волна распространяются не разделяясь пространственно и с одинаковой скоростью. Направление, в котором не наблюдается двойного лучепреломления, называется оптической осью кристалла. Следует иметь в виду, что оптическая ось – это не прямая линия, проходящая через какую-то точку кристалла, а определенное направление в кристалле. Любая прямая, параллельная данному направлению, является оптической осью.

Любая плоскость, проходящая через оптическую ось кристалла, называется главным сечением или главной плоскостью кристалла. Обычно пользуются главным сечением, проходящим через световой луч в кристалле.

Исследование обыкновенного и необыкновенного лучей показывает, что оба луча полностью плоскополяризованы во взаимно перпендикулярных направлениях. Колебания вектора напряженности электрического поля в обыкновенной волне совершаются в направлении, перпендикулярном главному сечению кристалла для обыкновенного луча. В необыкновенной волне колебания вектора напряженности совершаются в плоскости, совпадающей с главным сечением для необыкновенного луча.

На рис. 5.15 показаны направления колебаний вектора напряженности в обоих лучах. Предполагается, что оба луча и пересекающая их оптическая ось  лежат в плоскости рисунка. Из рисунка видно, что в данном случае плоскости колебаний обыкновенного и необыкновенного лучей взаимно перпендикулярны. Отметим, что это наблюдается практически при любой ориентации оптической оси, поскольку угол между обыкновенным и необыкновенным лучами очень мал.

На выходе из кристалла оба луча отличаются друг от друга только направлением поляризации, так что названия «обыкновенный» и «необыкновенный» имеют смысл только внутри кристалла.

Двойное лучепреломление объясняется анизотропностью кристаллов. В кристаллах некубической системы диэлектрическая проницаемость e оказывается зависящей от направления. В одноосных кристаллах e в направлении оптической оси и в направлениях, перпендикулярных к ней, имеют различные значения e|| и e^. В других направлениях e имеет промежуточные значения. Как известно, показатель преломления . Следовательно, из анизотропности e вытекает, что электромагнитным волнам с различными направлениями колебаний вектора  соответствуют разные значения показателя преломления . Поэтому скорость световых волн зависит от направления колебаний светового вектора . В обыкновенном луче колебания светового вектора происходят в направлении, перпендикулярному к главному сечению кристалла, поэтому при любом направлении обыкновенного луча  образует с оптической осью кристалла прямой угол и скорость световой волны будет одна и та же, равная .

Одноосные кристаллы характеризуются показателем преломления обыкновенного луча, равным , и показателем преломления необыкновенного луча, перпендикулярного к оптической оси, равным . Последнюю величину называют просто показателем преломления необыкновенного луча. Для исландского шпата , . Заметим, что значения  и  зависят от длины волны.

С точки зрения принципа Гюйгенса при двойном лучепреломлении в каждой точке поверхности волны, достигающей грани кристалла, возникает не одна, как в обычных средах, вторичная волна, а одновременно две волны, которые и распространяются в кристалле. Скорость распространения обыкновенной волны по всем направлениям одинакова. Скорость распространения необыкновенной волны в направлении оптической оси совпадает со скоростью обыкновенной волны, а по другим направлениям отличается.

Существуют кристаллы, в которых один из лучей, обыкновенный или необыкновенный, поглощается сильнее другого. Это явление называется дихроизмом. К таким веществам, в частности, относится кристалл турмалина. В нем обыкновенный луч полностью поглощается на длине около 1 мм.

44)Дисперсия света.

Дисперсией света называется зависимость преломления n вещества от частоты w ( или длины волны ). Эту зависимость можно охарактеризовать функцией :

n=f(w)

С увеличением частоты показатель преломления возрастает : dn/dw > 0. В этом случае дисперсия называется нормальной. Если вещество поглощает часть лучей, то в области поглощения дисперсия обнаруживает аномалию – показатель преломления при увеличении частоты уменьшается : dn/dw <0. Такой ход зависимости n от w называется аномальной дисперсией.

Дисперсия света может быть также объяснена на основе электромагнитной теории и электронной теории вещества. Для этого нужно рассмотреть процесс взаимодействия света с веществом. Итак, абсолютный показатель преломления среды , равен :

где  - диэлектрическая проницаемость среды,  - магнитная проницаемость. В оптической области спектра для всех веществ   1, поэтому

     (186.1)

 

Трудности объяснения дисперсии света с точки зрения электромагнитной теории Максвелла устраняются электронной теорией Лоренца. В теории Лоренца дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны.

Применим электронную теорию дисперсии света для однородного диэлектрика, предположив формально, что дисперсия света является следствием зависимости  от частоты  световых волн. Диэлектрическая проницаемость вещества, по определению равна

где æ - диэлектрическая восприимчивость среды, 0 - электрическая постоянная, Р - мгновенное значение поляризованности. Следовательно,

 

 (186.2)

т. е. зависит от Р. В данном случае основное значение имеет электронная поляризация, т. е. вынужденные колебания электронов под действием электрической составляющей поля волны, так как для ориентационной поляризации молекул частота колебаний в световой волне очень высока (v  1015 Гц).

В первом приближении можно считать, что вынужденные колебания совершают только внешние, наиболее слабо связанные с ядром электроны - оптические электроны. Для простоты рассмотрим колебания только одного оптического электрона. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен р = ех, где е - заряд электрона, х - смещение электрона под действием электрического поля световой волны. Если концентрация атомов в диэлектрике равна n0 то мгновенное значение поляризованности

     (186.3) (186.4)

Следовательно, задача сводится к определению смещения х электрона под действием внешнего поля Е. Поле световой волны будем считать функцией частоты со, т. е. изменяющимся по гармоническому закону: E = E0cost.

Уравнение вынужденных колебаний электрона (см. § 147) для простейшего случая (без учета силы сопротивления, обусловливающей поглощение энергии падающей волны) запишется в виде

  (186.5)

где F0 = eE0 - амплитудное значение силы, действующей на электрон со стороны поля волны, - собственная частота колебаний электрона, m - масса электрона. Решив уравнение (186.5), найдем  = n2 в зависимости от констант атома (е, m, 0) и частоты  внешнего поля, т. е. решим задачу дисперсии. Решение уравнения (186.5) можно записать в виде

                              (186.6)  (186.7)

 в чем легко убедиться подстановкой (см. (147.8)). Подставляя (186.6) и (186.7) в (186.4), получим

   (186.8)

Если в веществе имеются различные заряды eh совершающие вынужденные колебания с различными собственными частотами еа0|, то

    (186.9)

где m1 - масса i-го заряда.

Из выражений (186.8) и (186.9) вытекает, что показатель преломления л зависит от частоты  внешнего поля, т. е. полученные зависимости действительно подтверждают явление дисперсии света, хотя и при указанных выше допущениях, которые в дальнейшем надо устранить. Из выражений (186.8) и (186.9) следует, что в области от  = 0 до  = 0n2 больше единицы и возрастает с увеличением  (нормальная дисперсия); при  = 0n2 = ± ; в области от   = 0 до  = n2 меньше единицы и возрастает от -  до 1 (нормальная дисперсия). Перейдя от n2 к n, получим, что график зависимости n от  имеет вид, изображенный на рис. 270.

   Рис. 270

 

Такое поведение n вблизи 0 - результат допущения об отсутствии сил сопротивления при колебаниях электронов. Если принять в расчет и это обстоятельство, то график функции л (со) вблизи too задается штриховой линией АВ. Область АВ - область аномальной дисперсии (n убывает при возрастании ), остальные участки зависимости n от  описывают нормальную дисперсию (n возрастает с возрастанием ).

 

45) Тепловое излучение

Тепловое излучение – процесс распространения электромагнитных колебаний с различной длиной волн, обусловленный тепловым движением атомов или молекул излучающего тела. Возникновение потока лучей в результате превращения тепловой энергии в лучистую, называется излучением или лучеиспусканием, а обратный переход лучистой энергии в тепловую называют поглощением лучей.

Количественной характеристикой теплового излучения является спектральная плотность энергетической светимости (излучательности) тела – мощность излучения с единицы площади поверхности тела в интервале частот единичной ширины:

,

где – энергия электромагнитного излучения, испускаемого за единицу времени с единицы площади поверхности тела (мощность излучения) в интервале частот  до +d.

В зависимости от температуры излучающего тела его лучеиспускание различно. При температуре ниже 500°С только незначительная часть всех лучей воспринимается глазом как “свет”, а наибольшая часть приходится на долю невидимого теплового излучения. Интенсивность теплового излучения характеризуется излучательной (лучеиспускательной) способностью тела, имеющего температуру Т:

                                                               ,                                                 (2.1)

где Qл – полное количество теплоты, Дж; F – поверхность излучающего тела, м2; τ – время, с.

Лучеиспускательная способность тела есть количество энергии, излучаемое в единицу времени единицей поверхности нагретого тела, имеющего температуру Т, в окружающую среду с температурой абсолютного нуля. Для абсолютно черного тела связь между излучательной способностью и абсолютной температурой выражается законом Стефана-Больцмана:

                                                            ,                                               (2.2)

где  Ко – константа излучения абсолютно черного тела, Ко=5,67·10-8 Вт/(м2·К4); Т – абсолютная температура поверхности тела, К; Eо – излучательная способность черного тела, Вт/м2.

 Пусть на элементарную площадку поверхности тела падает поток лучистой энергии , обусловленный электромагнитными волнами, частоты которых заключены в интервале dν. Часть этого потока будет поглощаться телом. Безразмерная величина

 

(1.2.2)

 

называется поглощательной способностью тела. Она также сильно зависит от температуры.

Закон Кирхгофа

 

Отношение спектральной плотности энергетической светимости(излучения) к спектральной поглощательной способности(поглощения) не зависит от природы тела; оно является для всех тел универсальной функцией частоты (длины волны) и температуры (закон Кирхгофа):

 

.                                                                                                         (7.1)

 

Из закона Кирхгофа вытекает, что спектральная плотность энергетической светимости любого тела в любой области спектра всегда меньше спектральной плотности энергетической светимости черного тела (при одинаковых значениях Т и ), так как и поэтому . Кроме того, из (7.1) видно, что если тело при данной температуре Т не поглощает электромагнитные волны в интервале частот от  до +d, то оно их в этом интервале частот при температуре Т и не излучает, так как и .

Абсолютно чёрное тело.

Пусть одно из тел в полости обладает свойством поглощать всю падающую на его поверхность лучистую энергию любого спектрального состава. Такое тело называют абсолютно черным. При заданной температуре собственное тепловое излучение абсолютно черного тела, находящегося в состоянии теплового равновесия с излучением, должно иметь тот же спектральный состав, что и окружающее это тело равновесное излучение. В противном случае равновесие между абсолютно черным телом и окружающем его излучением не могло бы установиться. Поэтому задача сводится к изучению спектрального состава излучения абсолютно черного тела. Решить эту задачу классическая физика оказалась не в состоянии.

Для установления равновесия в полости необходимо, чтобы каждое тело испускало ровно столько лучистой энергии, сколько оно поглощает. Это одна из важнейших закономерностей теплового излучения. Отсюда следует, что при заданной температуре абсолютно черное тело испускает с поверхности единичной площади в единицу времени больше лучистой энергии, чем любое другое тело.

Рисунок 5.1.1.

Модель абсолютно черного тела

Абсолютно черных тел в природе не бывает. Хорошей моделью такого тела является небольшое отверстие в замкнутой полости (рис. 5.1.1). Свет, падающий через отверстие внутрь полости, после многочисленных отражений будет практически полностью поглощен стенками, и снаружи отверстие будет казаться совершенно черным. Но если полость нагрета до определенной температуры T, и внутри установилось тепловое равновесие, то собственное излучение полости, выходящее через отверстие, будет излучением абсолютно черного тела

Формула Планка

Выдающийся немецкий физик Макс Планк ,изучая тепловое излучение, открыл его атомный характер. Он рассматривал модель черного тела, представлявшую собой совокупность электромагнитных осцилляторов, излучающих и поглощающих электромагнитную энергию каждый определенной частоты. Планк принял гипотезу, что каждый осциллятор излучает и поглощает энергию конечными порциями — квантами. В 1900 году Планк доложил Берлинскому физическому обществу о своей гипотезе и новой формуле излучения.

Распределение энергии по спектру излучения описывается формулой Планка, в соответствии с которой в спектре имеется единственный максимум, положение которого определяется законом Вина. Площадь под кривой соответствует суммарной мощности излучения по закону Стефана-Больцмана. Открытие Планка заложило основу развития квантовой физики.

Закон Стефана — Больцмана

Австрийский физик и математик Йозеф Стефан (Joseph Stefan) в 1879 году путём измерения теплоотдачи платиновой проволоки при различных температурах установил пропорциональность излучаемой ею энергии четвертой степени абсолютной температуры. Теоретическое обоснование этого закона было дано в 1884 году учеником Стефана Людвигом Больцманом (Ludwig Boltzmann).

Энергетическая светимость (q) абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры (T).

q = σ T4

Константа в этой формуле называется постоянной Стефана-Болъцмана, σ = 5.6710-8 (Вт/м2)/К4. Энергетическая светимость — это мощность излучения на всех длинах волн с единицы поверхности (Вт/м2). Из этого следует, что все окружающие нас объекты испускают тепловое излучение, так как всегда имеют температуру выше абсолютного нуля 0 К или минус 273ºС. При повышении абсолютной температуры в два раза, мощность излучения увеличится в 16 раз. Закон справедлив для излучения Абсолютно черного тела.

Закон Вина

Важные результаты в термодинамике излучения были получены немецким физиком Вильгельмом Вином (Wilhelm Wien). В 1893 году Вин на основе термодинамических соображений впервые вывел закон, определяющий положение максимума в распределении энергии в спектре излучения АЧТ. Закон показывает, как смещается максимум распределения энергии в спектре излучения абсолютно чёрного тела при изменении температуры.

Длина волны (λмакс), на которую приходится максимум энергии в спектре равновесного излучения, обратно пропорциональна абсолютной температуре (Т) абсолютно черного тела.

λмакс = b / T

В приведенной формуле постянная b = 2,89710-3 м·К, чтобы получить результат вычисления λмакс в мкм следует взять значение b = 2897 мкм·К. Например, при температуре 36°С максимум излучения приходится на 9,4 мкм. При температуре порядка 6000 К (темература поверхности Солнца) максимум излучения приходится на 0,47 мкм (соответствует желтовато-белому).

Законы Планка и Вина объясняют, почему вещество при нагреве начинает светиться в видимом спектре. Как видно из формул, при повышении температуры объекта, все больше излучения испускается с короткими длинами волн. Начиная с температуры около 500°С это излучение уже можно наблюдать невооруженным глазом.

2




1. Понятие векселя
2. Боги
3. прогресивної ери
4. Внимание и цивилизация
5. Логопедическая технология коррекции нарушения письма у учащихся начальных классов
6. Общая экология
7. Cryptic Slaughter
8. .1. Иудаизм. Стена Плача в Иерусалиме 4 1
9. Epitaph
10. Привести формулу и пояснить физический смысл закона Кулона1
11. Лечебное дело о прохождении производственной практики Помощник младшего медицинского персонала
12. МАКРОЭКОНОМИКА для студентов дневной заочной формы обучения образовательноквалификационного ур
13. Полномочия Министерства финансов РФ
14. Энергетическая
15. победительницы подписывают в Версальском дворце мирный договор с Германией
16. Безопасность электроустановок
17.  Объект и предмет СЭС
18. реферат дисертації на здобуття наукового ступеня кандидата технічних наук Харків 1999 Дисе
19. разрабатывать дизайн онлайнгазеты Desktop ~ рабочий стол Desktop PC ~ настольный компьютер Desktop publisher ~ верст
20. экран на котором проявляется передаваемая ему информация после ее восприятия и переработки Существует н