Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Найдем по двумерной плотности одномерные плотности случайных величин X и Y.
Т.к. полученное равенство верно для всех х, то подинтегральные выражение
аналогично
В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем курсе мы исследуем только 2 конструкции - дискретные или непрерывные, то для них полученные формулы эквивалентны и не имеет смысла какую-то из них вводить как первичную.
Найдем плотность вероятности случайной величины Y при условии, что в результате испытания над случайной величиной XY , X приняло значение х.
Обозначим
тут мы использовали второе определение одномерной плотности.
В качестве условной плотности вероятности используется следующее выражение
Обоснование выражения для условной плотности вероятности
Выведем выражение для a
Обозначим
Условное мат. ожидание и дисперсия линии регрессии - зависимость Y от X, выраженная в изменении средних значений Y при переходе x от одного значения к другому. Найдем математическое ожидание MZ, где
Двумерная дискретная случайная величина называется случайной величиной с независимыми компонентами, если
Показать самим, что справедливо
Доказать самим, что если испытание, исходом которого является пара чисел является композицией двух независимых испытаний, то случайные величины X Y независимы.
Непрерывными случайными величинами с независимыми компонентами называются если:
Непрерывная двумерная случайная величина имеет независимые случайные компоненты, если
или
Покажем, что второе эквивалентно первому.
Покажем, что если двумерная непрерывная случайная величина XY порождена композицией независимых испытаний, то X и Y независимы.
В силу определения независимых испытаний в композиционном пространстве
В силу определения независимых испытаний в композиционном пространстве A и B независимы.
Следовательно:
Это система, состоящая из m дискретных одномерных случайных величин. Всю арифметику проделать самостоятельно.
Система из m одномерных непрерывных случайных величин, у которой пространством элементарных событий является m-мерное арифметическое пространство либо его область, имеющая ненулевой объем.
m-мерная плотность вероятности удовлетворяет выражению
m-мерной функцией распределения называется числовая скалярная функция m действительных аргументов, которая численно равна:
Случайные величины x1, x2, ... xm независимы, если
Доказать, что если m-мерная случайная величина порождена композицией m-мерных испытаний, то события независимы.
Запишем аналог формул
для многомерного случая.
Для получения плотности вероятности необходимо n-мерную плотность проинтегрировать в бесконечных пределах по переменным, которые соответствуют случайным величинам, не входящим в
Найдем плотность n-мерной случайной величины.
XY
Числовая скалярная функция
является одномерной дискретной случайной величиной, со следующим отличием от обычного представления:
для того, чтобы в испытании получить реализацию необходимо провести испытание над двумерной случайной величиной XY, зафиксировать ее результат xi,yi и подставить в . Полученное число и есть реализация случайной величины .
Таблица случайной величины строится по таблице
Случайную величину аппроксимируем дискретной по следующему правилу:
пространство элементарных событий XY представим в виде совокупности прямоугольников с вершинами , если в результате испытания XY попало в прямоугольник (i,j), то эта случайная величина приняла значение . Вероятность наступления этого события равна:
точное значение мат. ожидания
- многомерная дискретная случайная величина
Найдем
Вероятностное пространство зададим в виде
Тогда
Теорема 1. Математическое ожидание суммы случайных величин равно сумме математических ожиданий
а) дискретный случай
б) непрерывный случай
Пусть n-произвольное число
Теорема 2. Математическое ожидание произведения независимых случайных величин равно произведению мат.ожиданий.
По определению имеем т.к. случайные величины X и Y независимы, то
Коэффициентом ковариации называется выражение
Эта формула верна, т.к. верна следующая формула.
Пусть
тогда
Если случайные величины XY независимы, то их коэффициент ковариации равен нулю, обратное в общем случае неверно.
Пример.
X - случайная величина, имеющая нормальное распределение с нулевым мат.ожиданием
Y=X2 (Y и X связаны функционально).
Найдем
Случайная величина называется нормированной случайной величиной, ее мат.ожидание равно 0, а дисперсия -1.
Коэффициентом корреляции случайных величин X и Y - это число
Следствие:
Если X и Y независимы, то коэффициент ковариации равен 0, то
Доказать, если независимы, то
1.
По определению
т.к. всегда неотрицательна, то
2. Если , то с вероятность 1 X и Y связаны линейно.
Рассмотрим X*-Y*, отсюда M(X*-Y*)=0.
Если X и Y дискретные случайные величины, и дисперсия равна 0, то их сумма (разность) является постоянной
Пусть X и Y непрерывные случайные величины, то в соответствии с неравенством Чебышева
т.к.
Это неравенство и обозначает, что с вероятностью 1
откуда y=ax+b, где
Если коэффициент корреляции , то результаты опыта лежат на прямой
В общем случае Y можно представить в виде
Коэффициент корреляции является мерой близости линейной связи между случайными величинами X и Y: чем ближе коэффициент корреляции по модулю к 1, тем более тесно результаты конкретного испытания над X и Y соотносятся с прямой ax+b.
Дискретный случай.
Пусть X и Y - две дискретные независимые величины данного испытания и Z=X+Y. Возможное значение Z=z=x+y всегда представляет сумму двух возможных значений слагаемых X=x и Y=y. По правилу сложения
где суммирование распространено на те пары, которые в сумме дают Z. В силу независимости X и Y
Приняв во внимание, что y=z-x
последняя сумма распространяется не на все значения x, а только на такие, для которых z-x равно одному из возможных значений y.
Если условиться, что P(y=z-x)=0, если z-x не принадлежит к числу возможных значений Y, то
Аналогично
Формулы (1) и (2) определяют композицию величин X и Y.
Или
Непрерывный случай.
Пусть X и Y независимые непрерывные случайные величины. Пусть f(x,y) - двумерная плотность вероятности двумерной случайной величины XY. Плотность совместного распределения f(x,y) в силу независимости X и Y имеет вид
Рассмотрим функцию распределения случайной величины Z.
Для того, чтобы имело место событие действительное число необходимо и достаточно, чтобы случайная точка Q(x,y) попала в область 1.
Тогда эта вероятность равна
Дифференцируя под знаком интеграла
Двумерная случайная величина XY распределена нормально, если ее плотность вероятности f(x,y) имеет вид
1.
2.
т.е. X и Y имеет одномерное нормальное распределение.
Сделаем подстановку
тут мы для краткости обозначили
Прибавляя и вычитая в показателе степени по e по
Сделаем подстановку
3. то X и Y независимые случайные величины, то плотность вероятности двумерная распадается на произведение одномерных
Найдем условную плотность вероятности
Подставляя в полученное выражение значения и получаем
Вывод: условная плотность вероятности оказалось нормальной с мат. ожиданием
и дисперсией, постоянной
n-мерная непрерывная случайная величина имеет нормальное распределение, если ее многомерная плотность вероятности в матричном виде
Показать, что формула
в двумерном случае переходит в
для n=2 находим
Показатель степени при e
Найдем обратную матрицу матрице В
Проводим непосредственное доказательство
B - ковариационная матрица
Показать, что эта формула в двумерном случае совпадает с выражением, рассмотренном ранее.
Свойства n-мерного нормального распределения.
- определитель матрицы B - неотрицательное число.
По критерию Сильвестрова, если то все главные миноры матрицы B неотрицательные и определитель матрицы B неотрицателен.