Будь умным!


У вас вопросы?
У нас ответы:) SamZan.net

Тема 1 КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ И СИСТЕМНЫЙ АНАЛИЗ 1

Работа добавлена на сайт samzan.net:

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.11.2024

Тема 1. КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ И СИСТЕМНЫЙ АНАЛИЗ

1.1 Свойства сложных систем. Сложная система, как объект моделирования. Прикладной системный анализ – методология исследования сложных систем

В настоящее время понятие “система” в науке является до конца не определенным. Ученые приступили к исследованию сложных систем (СС). В многочисленной литературе по системному анализу и системотехнике  отмечаются следующие основные свойства сложных систем:

1 свойство: Целостность и членимость.

Сложная система рассматривается как целостная совокупность элементов, характеризующаяся наличием большого количества взаимосвязанных и взаимодействующих между собой элементов. У исследователя существует субъективная возможность разбиения системы на подсистемы, цели функционирования которых подчинены общей цели функционирования всей системы (целенаправленность систем).

Целенаправленность интерпретируется, как способность системы управлять в условиях неопределенности и воздействия случайных факторов путем изменения параметров в одном элементе для преобразования состояния других.

2 свойство: Связи.

Наличие существенных устойчивых связей (отношений) между элементами или (и) их свойствами, превосходящими по мощности (силе) связи (отношения) этих элементов с элементами, не входящими в данную систему (внешней средой).

Под “связями” понимается некоторый виртуальный канал, по которому осуществляется обмен между элементами и внешней средой веществом, энергией, информацией.

3 свойство: Организация.

Свойство характеризуется наличием определенной организации

Под организацией будем понимать упорядоченное распределение существенных связей и элементов во времени и пространстве. При формировании связей складывается определенная структура системы, а свойства элементов трансформируются в функции (действия, поведение).

При исследовании сложных систем обычно отмечают:

• Сложность функции, выполняемой системой и направленной на достижение заданной цели функционирования;

• Наличие управления, разветвленной информационной сети и интенсивных потоков информации;

• Наличие взаимодействия с внешней средой и функционирование в условиях неопределенности и воздействия случайных факторов различной природы.

4 свойство: Интегративные качества.

Существование интегративных качеств (свойств), т.е. таких качеств, которые присущи системе в целом, но не свойственны, ни одному из ее элементов в отдельности. Наличие интегративных качеств показывает, что свойства системы хотя и зависят от свойств элементов, но не определяются ими полностью.

Примеры сложных систем в экономической сфере многочисленны: организационно-производственная система, предприятие; социально-экономическая система, например регион; и др.

Сложные системы как объект моделирования, имеет следующие характерные особенности:

  1. Сложные системы, как правило, уникальны. Существующие аналоги таких объектов заметно отличаются друг от друга. Следствием этого на практике является необходимость строить новые модели.
  2. Слабая структурированность теоретических и фактических знаний о системе. Так как изучаемые системы уникальны, то процесс накопления и систематизации знаний о них затруднен. Слабо изучены сами процессы. При идентификации сложных систем присутствует большая доля субъективных экспертных знаний о системе.

Рассмотренные выше интегративные качества сложных систем предопределяют важный методологический вывод: сложная система не сводится к простой совокупности элементов, расчленяя сложные системы на отдельные части, изучая каждую из них в отдельности, нельзя познать свойства системы в целом. Поэтому описание отдельных подсистем необходимо выполнять с учетом их места во всей системе в целом, и наоборот, система в целом исследуется исходя из свойств отдельных подсистем. Одну из основных черт сложных систем составляет взаимодействие выделенных подсистем. Необходимо учитывать результат воздействия одной подсистемы на другую и их взаимодействие с внешней средой. Исследователи отмечают наличие большого числа взаимосвязанных подсистем, многомерность сложных систем, обусловленную большим числом связей между подсистемами, что затрудняет идентификацию моделируемых объектов. Отметим также, что расчленение сложные системы на подсистемы зависит от целей создания системы и взглядов исследователя на нее.

  1. Разнородность подсистем и элементов, составляющих систему. Это определяется и многообразием природы (физической разнородностью подсистем, имеющих различную природу), и разнородностью математических схем, описывающих функционирование различных элементов, а также одних и тех же элементов на различных уровнях изучения. Присутствует необходимость исследовать систему в динамике, с учетом поведенческих аспектов.
  2. Случайность и неопределенность факторов, действующих в изучаемой системе. Учет этих факторов приводит к резкому усложнению задач и увеличивает трудоемкость исследований (необходимость получения представительного набора данных). Существует необходимость учета большого количества действующих в системе факторов.
  3. Многокритериальность оценок процессов, протекающих в системе. Невозможность однозначной оценки (выбора единого обобщенного критерия) диктуется следующими обстоятельствами: наличием множества подсистем, каждая из которых, вообще говоря, имеет свои цели, оценивается по своим локальным критериям; множественностью показателей (при системном подходе иногда противоречивых, – в этом случае, выбирается компромиссный вариант), характеризующих работу всей системы; наличием неформализуемых критериев, используемых при принятии решений, основанных на практическом опыте лиц, принимающих решение.

При системном подходе процесс исследования сложных систем носит итерационный характер. Исходная модель усложняется путем детализации. Однако создание полной модели сложных систем (супермодели) бесполезно, т.к. она будет столь же сложна в изучении, как и система. Следствием этого является необходимость использования ансамбля (комплекса) моделей при анализе системы. Различные модели могут отражать как разные стороны функционирования системы, так и разные уровни отображения исследователем одних и тех же процессов.

Рассмотренные особенности исследования сложных систем обуславливают потребность в специальных способах построения и анализа моделей сложных систем. Традиционные аналитические модели здесь беспомощны – нужны специальные компьютерные технологии.

Методологией исследования сложных систем является системный анализ . Один из важнейших инструментов прикладного системного анализа – компьютерное моделирование.

1.2 Определение модели и понятие моделирования

Практика свидетельствует: самое лучшее средство для определения свойств объекта - натурный эксперимент, т. е. исследование свойств и поведения самого объекта в нужных условиях. Дело в том, что при проектировании невозможно учесть многие факторы, расчет ведется по усредненным справочным данным, используются новые, недостаточно проверенные элементы (прогресс нетерпелив!), меняются условия внешней среды и многое другое. Поэтому натурный эксперимент - необходимое звено исследования. Неточность расчетов компенсируется увеличением объема натурных экспериментов, созданием ряда опытных образцов и "доводкой" изделия до нужного состояния. Так поступали и поступают при создании, например, телевизора или радиостанции нового образца.

Однако во многих случаях натурный эксперимент невозможен.

Например, наиболее полную оценку новому виду вооружения и способам его применения может дать война. Но не будет ли это слишком поздно?

Натурный эксперимент с новой конструкцией самолета может вызвать гибель экипажа.

Натурное исследование нового лекарства опасно для жизни человека.

Натурный эксперимент с элементами космических станций также может вызвать гибель людей.

Время подготовки натурного эксперимента и проведение мероприятий по обеспечению безопасности часто значительно превосходят время самого эксперимента. Многие испытания, близкие к граничным условиям, могут протекать настолько бурно, что возможны аварии и разрушения части или всего объекта.

Из сказанного следует, что натурный эксперимент необходим, но в то же время невозможен либо нецелесообразен.

Выход из этого противоречия есть и называется он "моделирование".

Моделирование - это замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала.

Отсюда следует.

Моделирование - это,

  1. во-первых, процесс создания или отыскания в природе объекта, который в некотором смысле может заменить исследуемый объект. Этот промежуточный объект называется моделью. Модель может быть материальным объектом той же или иной природы по отношению к изучаемому объекту (оригиналу). Модель может быть мысленным объектом, воспроизводящим оригинал логическими построениями или математическими формулами и компьютерными программами.
  2. во-вторых, это испытание, исследование модели. То есть, моделирование связано с экспериментом, отличающимся от натурного тем, что в процесс познания включается "промежуточное звено" - модель. Следовательно, модель является одновременно средством эксперимента и объектом эксперимента, заменяющим изучаемый объект.
  3. в-третьих, это перенос полученных на модели сведений на оригинал или, иначе, приписывание свойств модели оригиналу. Чтобы такой перенос был оправдан, между моделью и оригиналом должно быть сходство, подобие.

Определение 1. Модель представляет собой абстрактное описание системы (объекта, процесса, проблемы, понятия) в некоторой форме, отличной от формы их реального существования.

Подобие может быть физическим, геометрическим, структурным, функциональным и т. д. Степень подобия может быть разной - от тождества во всех аспектах до сходства только в главном. Очевидно, модели не должны воспроизводить полностью все стороны изучаемых объектов. Достижение абсолютной одинаковости сводит моделирование к натурному эксперименту, о возможности или целесообразности которого было уже сказано.

Определение 2.  Моделирование является одним из основных методов познания, формой отражения действительности и предназначено для воспроизведения тех или иных свойств реальных объектов, предметов и явлений с помощью других объектов, процессов, явлений, либо с помощью абстрактного описания в виде изображения, плана, карты, совокупности уравнений, алгоритмов и программ.

Итак, в процессе моделирования всегда существует оригинал (объект) и модель, которая воспроизводит (моделирует, описывает, имитирует) некоторые черты объекта. Моделирование основано на наличии у многообразия естественных и искусственных систем, отличающихся как целевым назначением, так и физическим воплощением, сходства или подобия некоторых свойств: геометрических, структурных, функциональных, поведенческих. Это сходство может быть полным (изоморфизм) и частичным (гомоморфизм). 

Основные цели моделирования:

Прогноз - оценка поведения системы при некотором сочетании ее управляемых и неуправляемых параметров. Прогноз – главная цель моделирования.

Объяснение и лучшее понимание объектов. Здесь чаще других встречаются задачи оптимизации и анализа чувствительности. Оптимизация - это точное определение такого сочетания факторов и их величин, при котором обеспечиваются наилучший показатель качества системы, наилучшее по какому-либо критерию достижение цели моделируемой системой. Анализ чувствительности - выявление из большого числа факторов тех, которые в наибольшей степени влияют на функционирование моделируемой системы. Исходными данными при этом являются результаты экспериментов с моделью.

Поучительный пример недооценки моделирования - гибель английского броненосца "Кэптен" в 1870 году. В стремлении еще больше увеличить свое тогдашнее морское могущество и подкрепить империалистические устремления в Англии был разработан суперброненосец "Кэптен". В него было вложено все, что нужно для "верховной власти" на море: тяжелая артиллерия во вращающихся башнях, мощная бортовая броня, усиленное парусное оснащение и очень низкими бортами - для меньшей уязвимости от снарядов противника. Консультант инженер Рид построил математическую модель устойчивости "Кэптена" и показал, что даже при незначительном ветре и волнении ему грозит опрокидывание. Но лорды Адмиралтейства настояли на строительстве корабля. На первом же учении после спуска на воду налетевший шквал перевернул броненосец. Погибли 523 моряка. В Лондоне на стене одного из соборов прикреплена бронзовая плита, напоминающая об этом событии и, добавим мы, о тупоумии самоуверенных лордов Британского Адмиралтейства, пренебрегших результатами моделирования.

1.2. Классификация моделей

Исследуя современные сложных систем, человечество придумало различные классы моделей. Развитие информационных технологий можно в известном смысле интерпретировать как возможность реализации моделей различного вида в рамках информационных систем различного назначения: Информационные системы, Системы распознавания образов, Системы искусственного интеллекта, Системы поддержки принятия решений. В основе этих систем лежат модели различных типов: семантические, логические, математические и т.п.

Приведем общую классификацию основных видов моделирования: 

  1. концептуальное моделирование представление системы с помощью специальных знаков, символов, операций над ними или с помощью естественных или искусственных языков,
  2. физическое моделирование моделируемый объект или процесс воспроизводится исходя из соотношения подобия, вытекающего из схожести физических явлений;  
  3. структурно – функциональное моделирование моделями являются схемы (блок-схемы), графики, диаграммы, таблицы, рисунки со специальными правилами их объединения и преобразования;  
  4. математическое (логико-математическое) моделирование построение модели осуществляется средствами математики и логики;
  5. имитационное (программное) моделирование – при котором логико- математическая модель исследуемой системы представляет собой алгоритм функционирования системы, программно-реализуемый на компьютере.

Указанные виды моделирования могут применяться самостоятельно или одновременно, в некоторой комбинации (например, в имитационном моделировании используются практически все из перечисленных видов моделирования или отдельные приемы). Доминирующей тенденцией сегодня является взаимопроникновение всех видов моделирования, симбиоз различных информационных технологий в области моделирования, особенно для сложных приложений и комплексных проектов по моделированию. Так, например, имитационное моделирование включает в себя концептуальное моделирование (на ранних этапах формирования имитационной модели) и логико-математическое (включая методы искусственного интеллекта) – для целей описания отдельных подсистем модели, а также в процедурах обработки и анализа результатов вычислительного эксперимента и принятия решений. Технология проведения и планирования вычислительного эксперимента с соответствующими математическими методами привнесена в имитационное моделирование из физического (натурного) моделирования. Наконец, структурно-функциональное моделирование используется как при создании стратифицированного описания много модельных комплексов, так и для формирования различных диаграммных представлений при создании имитационных моделей.

Каждая модель создается для конкретной цели и, следовательно, уникальна. Однако наличие общих черт позволяет сгруппировать все их многообразие в отдельные классы, что облегчает их разработку и изучение. В теории рассматривается много признаков классификации и их количество не установилось. Тем не менее, наиболее актуальны следующие признаки классификации:

  1. характер моделируемой стороны объекта;
  2. характер процессов, протекающих в объекте;
  3. способ реализации модели.

1.2.1. Классификация моделей и моделирования по признаку "характер моделируемой стороны объекта"

В соответствии с этим признаком модели могут быть:

  1. функциональными (кибернетическими);
  2. структурными;

Функциональные модели отображают только поведение, функцию моделируемого объекта. В этом случае моделируемый объект рассматривается как "черный ящик", имеющий входы и выходы.

Физическая сущность объекта, природа протекающих в нем процессов, структура объекта остаются вне внимания исследователя, хотя бы потому, что неизвестны. При функциональном моделировании эксперимент состоит в наблюдении за выходом моделируемого объекта при искусственном или естественном изменении входных воздействий. По этим данным и строится модель поведения в виде некоторой математической функции.

Компьютерная шахматная программа - функциональная модель работы человеческого мозга при игре в шахматы.

Структурное моделирование это создание и исследование модели, структура которой (элементы и связи) подобна структуре моделируемого объекта. Как мы выяснили ранее, подобие устанавливается не вообще, а относительно цели исследования. Поэтому она может быть описана на разных уровнях рассмотрения. Наиболее общее описание структуры - это топологическое описание с помощью теории графов.

Учение войск - структурная модель вида боевых действий.

1.2.2. Классификация моделей и моделирования по признаку "характер процессов, протекающих в объекте"

По этому признаку модели могут быть детерминированными или стохастическими, статическими или динамическими, дискретными или непрерывными или дискретно-непрерывными.

Детерминированные модели отображают процессы, в которых отсутствуют случайные воздействия.

Стохастические модели отображают вероятностные процессы и события.

Статические модели служат для описания состояния объекта в какой-либо момент времени.

Динамические модели отображают поведение объекта во времени.

Дискретные модели отображают поведение систем с дискретными состояниями.

Непрерывные модели представляют системы с непрерывными процессами.

Дискретно-непрерывные модели строятся тогда, когда исследователя интересуют оба эти типа процессов.

Очевидно, конкретная модель может быть стохастической, статической, дискретной или какой-либо другой, в соответствии со связями, показанными на рис. 1.1.

1.2.3. Классификация моделей и моделирования по признаку "способ реализации модели"

Согласно этому признаку модели делятся на два обширных класса:

  1. абстрактные (мысленные) модели;
  2. материальные модели.


Рис. 1.1. Классификация моделей и моделирования

Нередко в практике моделирования присутствуют смешанные, абстрактно-материальные модели.

Материальное моделирование основано на применении моделей, представляющих собой реальные технические конструкции. Это может быть сам объект или его элементы (натурное моделирование). Это может быть специальное устройство - модель, имеющая либо физическое, либо геометрическое подобие оригиналу. Это может быть устройство иной физической природы, чем оригинал, но процессы в котором описываются аналогичными математическими соотношениями. Это так называемое аналоговое моделирование. Такая аналогия наблюдается, например, между колебаниями антенны спутниковой связи под ветровой нагрузкой и колебанием электрического тока в специально подобранной электрической цепи.

Абстрактные модели представляют собой определенные конструкции из общепринятых знаков на бумаге или другом материальном носителе или в виде компьютерной программы.

Абстрактные модели, не вдаваясь в излишнюю детализацию, можно разделить на:

  1. символические;
  2. математические.

Символическая модель - это логический объект, замещающий реальный процесс и выражающий основные свойства его отношений с помощью определенной системы знаков или символов. Это либо слова естественного языка, либо слова соответствующего тезауруса, графики, диаграммы и т. п.

Символическая модель может иметь самостоятельное значение, но, как правило, ее построение является начальным этапом любого другого моделирования.

Математическое моделирование - это процесс установления соответствия моделируемому объекту некоторой математической конструкции, называемой математической моделью, и исследование этой модели, позволяющее получить характеристики моделируемого объекта.

Математическая модель— это «эквивалент» объекта, отражающий в математической форме важнейшие его свойства.

Математические модели могут быть:

  1. аналитическими;
  2. имитационными;
  3. смешанными (аналитико-имитационными).

Аналитические модели - это функциональные соотношения: системы алгебраических, дифференциальных, интегро-дифференциальных уравнений, логических условий. Уравнения Максвелла - аналитическая модель электромагнитного поля. Закон Ома - модель электрической цепи.

Преобразование математических моделей по известным законам и правилам можно рассматривать как эксперименты. Решение на основе аналитических моделей может быть получено в результате однократного просчета безотносительно к конкретным значениям характеристик ("в общем виде"). Это наглядно и удобно для выявления закономерностей. Однако для сложных систем построить аналитическую модель, достаточно полно отражающую реальный процесс, удается не всегда. Тем не менее, есть процессы, например, марковские, актуальность моделирования которых аналитическими моделями доказана практикой.

Имитационное моделирование 

Создание вычислительных машин обусловило развитие нового подкласса математических моделей - имитационных.

Имитационное моделирование предполагает представление модели в виде некоторого алгоритма - компьютерной программы, - выполнение которого имитирует последовательность смены состояний в системе и таким образом представляет собой поведение моделируемой системы.

Процесс создания и испытания таких моделей называется имитационным моделированием, а сам алгоритм - имитационной моделью.

В чем заключается отличие имитационных и аналитических моделей?

В случае аналитического моделирования ЭВМ является мощным калькулятором, арифмометром. Аналитическая модель решается на ЭВМ.

В случае же имитационного моделирования имитационная модель - программа - реализуется на ЭВМ.

Имитационные модели достаточно просто учитывают влияние случайных факторов. Для аналитических моделей это серьезная проблема. При наличии случайных факторов необходимые характеристики моделируемых процессов получаются многократными прогонами (реализациями) имитационной модели и дальнейшей статистической обработкой накопленной информации. Поэтому часто имитационное моделирование процессов со случайными факторами называют статистическим моделированием.

Если исследование объекта затруднено использованием только аналитического или имитационного моделирования, то применяют смешанное (комбинированное), аналитико-имитационное моделирование. При построении таких моделей процессы функционирования объекта декомпозируются на составляющие подпроцессы и для которых возможно используют аналитические модели, а для остальных подпроцессов строят имитационные модели.


Рис. 1.2. Классификация по способу реализации модели

1.3. Компьютерное моделирование

Понятие компьютерного моделирования сегодня трактуется  шире традиционного понятия “моделирование на ЭВМ”, поэтому нуждается в уточнении.

Компьютерное моделирование – метод решения задач анализа или синтеза сложной системы на основе использования ее компьютерной модели.

К компьютерному моделированию относят:

• структурно-функциональное,

• имитационное.

Под термином “компьютерная модель”, чаще всего понимают:

• Условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью взаимосвязанных компьютерных таблиц, блок-схем, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т.д. и отображающих структуру и взаимосвязи между элементами объекта. Компьютерные модели такого вида мы будем называть структурно-функциональными;

• Отдельную программу (совокупность программ, программный комплекс) позволяющий с помощью последовательности вычислений и графического отображения их результатов, воспроизводить (имитировать) процессы функционирования объекта, системы объектов при условии воздействия на объект различных, как правило, случайных факторов. Такие модели мы будем называть имитационными.

Суть компьютерного моделирования заключена в получении количественных и качественных результатов на имеющейся модели. Качественные результаты анализа обнаруживают неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер анализа существующей сложных систем или прогноза будущих значений некоторых переменных. Кстати, возможность получения не только качественных, но и количественных результатов составляет существенное отличие имитационного моделирования от структурно-функционального. Становление компьютерного моделирования связано с имитационным моделированием. Имитационное моделирование было исторически первым по – сравнению со структурно-функциональным, без компьютера никогда не существовало. Имитационное моделирование имеет целый ряд специфических черт.  

Методологией компьютерного моделирования является системный анализ (направление кибернетики, общая теория систем).

Поэтому в освоении этого метода доминирующая роль отводится системным аналитикам. Сравним с моделированием на ЭВМ (например, математическим). Методологической основой здесь чаще всего являются: исследование операций, теория математических моделей, теория принятия решений, теория игр и многие другие. Центральной процедурой системного анализа является построение обобщенной модели, отражающей все факторы и взаимосвязи реальной системы. Предметом компьютерного моделирования может быть любая сложная система, любой объект или процесс. Категории целей при этом могут быть самыми различными. Компьютерная модель должна отражать все свойства, основные факторы и взаимосвязи реальной сложной системы, критерии, ограничения. Компьютерное моделирование сегодня предлагает совокупность методологических подходов и развитых технологических средств, используемых для подготовки и принятия решений экономического, организационного и социального или технического характера.

1.4. Этапы моделирования

Математическое моделирование как, впрочем, и любое другое, считается искусством и наукой. Известный специалист в области имитационного моделирования Роберт Шеннон так назвал свою широко известную в научном и инженерном мире книгу: "Имитационное моделирование - искусство и наука". Поэтому в инженерной практике нет формализованной инструкции, как создавать модели. И, тем не менее, анализ приемов, которые используют разработчики моделей, позволяет усмотреть достаточно прозрачную этапность моделирования.

Первый этап: уяснение целей моделирования. Вообще-то это главный этап любой деятельности. Цель существенным образом определяет содержание остальных этапов моделирования. Заметим, что различие между простой системой и сложной порождается не столько их сущностью, но и целями, которые ставит исследователь.

Обычно целями моделирования являются:

  1. прогноз поведения объекта при новых режимах, сочетаниях факторов и т. п.;
  2. подбор сочетания и значений факторов, обеспечивающих оптимальное значение показателей эффективности процесса;
  3. анализ чувствительности системы на изменение тех или иных факторов;
  4. проверка различного рода гипотез о характеристиках случайных параметров исследуемого процесса;
  5. определение функциональных связей между поведением ("реакцией") системы и влияющими факторами, что может способствовать прогнозу поведения или анализу чувствительности;
  6. уяснение сущности, лучшее понимание объекта исследования, а также формирование первых навыков для эксплуатации моделируемой или действующей системы.

Второй этап: построение концептуальной модели. Концептуальная модель (от лат. conception) - модель на уровне определяющего замысла, который формируется при изучении моделируемого объекта. На этом этапе исследуется объект, устанавливаются необходимые упрощения и аппроксимации. Выявляются существенные аспекты, исключаются второстепенные. Устанавливаются единицы измерения и диапазоны изменения переменных модели. Если возможно, то концептуальная модель представляется в виде известных и хорошо разработанных систем: массового обслуживания, управления, авторегулирования, разного рода автоматов и т. д. Концептуальная модель полностью подводит итог изучению проектной документации или экспериментальному обследованию моделируемого объекта.

Результатом второго этапа является обобщенная схема модели, полностью подготовленная для математического описания - построения математической модели.

Третий этап: выбор языка моделирования, построение модели. Модель может быть аналитической или имитационной, или их сочетанием. В случае аналитической модели исследователь должен владеть методами решения.

В истории математики (а это, впрочем, и есть история математического моделирования) есть много примеров тому, когда необходимость моделирования разного рода процессов приводила к новым открытиям. Например, необходимость моделирования движения привела к открытию и разработке дифференциального исчисления (Лейбниц и Ньютон) и соответствующих методов решения. Проблемы аналитического моделирования остойчивости кораблей привели академика Крылова А. Н. к созданию теории приближенных вычислений и аналоговой вычислительной машины.

Результатом третьего этапа моделирования является программа, составленная на наиболее удобном для моделирования и исследования языке - универсальном или специальном.

Четвертый этап: планирование эксперимента. Математическая модель является объектом эксперимента. Эксперимент должен быть в максимально возможной степени информативным, удовлетворять ограничениям, обеспечивать получение данных с необходимой точностью и достоверностью. Существует теория планирования эксперимента, нужные нам элементы этой теории мы изучим в соответствующем месте дисциплины.

Результат четвертого этапа - план эксперимента.

Пятый этап: выполнение эксперимента с моделью. Если модель аналитическая, то эксперимент сводится к выполнению расчетов при варьируемых исходных данных. При имитационном моделировании модель реализуется на ЭВМ с фиксацией и последующей обработкой получаемых данных. Эксперименты проводятся в соответствии с планом, который может быть включен в алгоритммодели. В современных системах моделирования такая возможность есть.

Шестой этап: обработка, анализ и интерпретация данных эксперимента. В соответствии с целью моделирования применяются разнообразные методы обработки: определение разного рода характеристик случайных величин и процессов, выполнение анализов - дисперсионного, регрессионного, факторного и др. Многие из этих методов входят в системы моделирования (GPSSWorld, AnyLogic и др.) и могут применяться автоматически. Не исключено, что в ходе анализа полученных результатов модель может быть уточнена, дополнена или даже полностью пересмотрена.

После анализа результатов моделирования осуществляется их интерпретация, то есть перевод результатов в терминыпредметной области. Это необходимо, так как обычно специалист предметной области (тот, кому нужны результаты исследований) не обладает терминологией математики и моделирования и может выполнять свои задачи, оперируя лишь хорошо знакомыми ему понятиями.

На этом рассмотрение последовательности моделирования закончим, сделав весьма важный вывод о необходимости документирования результатов каждого этапа. Это необходимо в силу следующих причин.

Во-первых, моделирование процесс итеративный, то есть с каждого этапа может осуществляться возврат на любой из предыдущих этапов для уточнения информации, необходимой на этом этапе, а документация может сохранить результаты, полученные на предыдущей итерации.

Во-вторых, в случае исследования сложной системы в нем участвуют большие коллективы разработчиков, причем различные этапы выполняются различными коллективами. Поэтому результаты, полученные на каждом этапе, должны быть переносимы на последующие этапы, то есть иметь унифицированную форму представления и понятное другим заинтересованным специалистам содержание.

В-третьих, результат каждого из этапов должен являться самоценным продуктом. Например, концептуальная модель может и не использоваться для дальнейшего преобразования в математическую модель, а являться описанием, хранящим информацию о системе, которое может использоваться как архив, в качестве средства обучения и т. д.

1.5. Адекватность модели

Итак, мы установили: модель предназначена для замены оригинала при исследованиях, которым подвергать оригинал нельзя или нецелесообразно. Но замена оригинала моделью возможна, если они в достаточной степени похожи или адекватны.

Адекватность означает, достаточно ли хорошо с точки зрения целей исследования результаты, полученные в ходе моделирования, отражают истинное положение дел. Термин происходит от латинского adaequatus - приравненный.

Говорят, что модель адекватна оригиналу, если при ее интерпретации возникает "портрет", в высокой степени сходный с оригиналом.

До тех пор, пока не решен вопрос, правильно ли отображает модель исследуемую систему (то есть адекватна ли она), ценность модели нулевая!

Термин "адекватность" как видно носит весьма расплывчатый смысл. Понятно, что результативность моделирования значительно возрастет, если при построении модели и переносе результатов с модели на систему - оригинал может воспользоваться некоторой теорией, уточняющей идею подобия, связанную с используемой процедурой моделирования.

К сожалению теории, позволяющей оценить, адекватность математической модели и моделируемой системы нет, в отличие от хорошо разработанной теории подобия явлений одной и той же физической природы.

Проверку адекватности проводят на всех этапах построения модели, начиная с самого первого этапа - концептуального анализа. Если описание системы будет составлено не адекватно реальной системе, то и модель, как бы точно она не отображала описание системы, не будет адекватной оригиналу. Здесь сказано "как бы точно", так как имеется в виду, что вообще не существуют математические модели, абсолютно точно отображающие процессы, существующие в реальности.

Если изучение системы проведено качественно и концептуальная модель достаточно точно отражает реальное положение дел, то далее перед разработчиками стоит лишь проблема эквивалентного преобразования одного описания в другое.

Итак, можно говорить об адекватности модели в любой ее форме и оригинала, если:

  1. описание поведения, созданное на каком-либо этапе, достаточно точно совпадает с поведением моделируемой системы в одинаковых ситуациях;
  2. описание убедительно представительно относительно свойств системы, которые должны прогнозироваться с помощью модели.

Предварительно исходный вариант математической модели подвергается следующим проверкам:

  1. все ли существенные параметры включены в модель;
  2. нет ли в модели несущественных параметров;
  3. правильно ли отражены функциональные связи между параметрами;
  4. правильно ли определены ограничения на значения параметров;
  5. не дает ли модель абсурдные ответы, если ее параметры принимают предельные значения;

Такая предварительная оценка адекватности модели позволяет выявить в ней наиболее грубые ошибки.

Но все эти рекомендации носят неформальный, рекомендательный характер. Формальных методов оценки адекватности не существует! Поэтому, в основном, качество модели (и в первую очередь степень ее адекватности системе) зависит от опыта, интуиции, эрудиции разработчика модели и других субъективных факторов.

Окончательное суждение об адекватности модели может дать лишь практика, то есть сравнение модели с оригиналом на основе экспериментов с объектом и моделью. Модель и объект подвергаются одинаковым воздействиям и сравниваются их реакции. Если реакции одинаковы (в пределах допустимой точности), то делается вывод, что модель адекватна оригиналу.

Однако надо иметь в виду следующее:

  1. воздействия на объект носят ограниченный характер из-за возможного разрушения объекта, недоступности к элементам системы и т. д.;
  2. воздействия на объект имеют физическую природу (изменение питающих токов и напряжений, температуры, скорости вращения валов и т. д.), а на математическую модель - это числовые аналоги физических воздействий.

Для оценки степени подобия структур объектов (физических или математических) существует понятие изоморфизма (изо - одинаковый, равный, морфе - форма, греч.).

Две системы изоморфны, если существует взаимно однозначное соответствие между элементами и отношениями (связями) этих систем.

Изоморфны, например, множество действительных положительных чисел и множество их логарифмов. Каждому элементу одного множества - числу соответствует значение его логарифма в другом, умножению двух чисел в первом множестве - сложение их логарифмов в другом. C точки зрения пассажира план метрополитена, находящийся в каждом вагоне поезда метро, изоморфен реальному географическому расположению рельсовых путей и станций, хотя для рабочего, ремонтирующего рельсовые пути, этот план естественно не является изоморфным. Фотография является изоморфным отображением реального лица для милиционера, но не является таковым для художника.

При моделировании сложных систем достигнуть такое полное соответствие трудно, да и нецелесообразно. При моделировании абсолютное подобие не имеет места. Стремятся лишь к тому. чтобы модель достаточно хорошо отражала исследуемую сторону функционирования объекта. Модель по сложности может стать аналогичной исследуемой системе и никакого упрощения исследования не будет.

Для оценки подобия в поведении (функционировании) систем существует понятие изофункционализма.

Две системы произвольной, а подчас неизвестной структуры изофункциональны, если при одинаковых воздействиях они проявляют одинаковые реакции. Такое моделирование называется функциональным или кибернетическим и в последние годы получает все большее распространение, например, при моделировании человеческого интеллекта (игра в шахматы, доказательство теорем, распознавание образов и т. д.). Функциональные модели не копируют структуры. Но копируя поведение, исследователи последовательно "подбираются" к познанию структур объектов (человеческого мозга, Солнца, и др.).

1.6. Требования, предъявляемые к моделям

Итак, общие требования к моделям.

Модель должна быть актуальной. Это значит, что модель должна быть нацелена на важные для лиц, принимающих решения, проблемы.

Модель должна быть результативной. Это значит, что полученные peзyльтaты мoдeлиpoвaния мoгyт найти ycпeшнoe пpимeнeниe. Данное требование может быть реализовано только в случае правильной формулировки требуемого результата.

Модель должна быть дocтoвepнoй. Это значит, что результаты моделирования не вызовут coмнeния. Данное требование тесно связано с понятием адекватности, то есть, если модель неадекватна, то она не может давать достоверных результатов.

Модель должна быть экономичной. Это значит, что эффект от использования результатов мoдeлиpoвaния превышает расходы ресурсов на ее создание и исследование.

Эти требования (обычно их называют внешними) выполнимы при условии обладания моделью внутренними свойствами.

Модель должна быть:

  1. Cyщecтвeннoй, т. е. пoзвoляющeй вcкpыть cyщнocть поведения системы, вcкpыть неочевидные, нетривиальные детали.
  2. Moщнoй, т. е. пoзвoляющeй пoлyчить шиpoкий набop существенных cвeдeний.
  3. Пpocтoй в изyчeнии и иcпoльзoвaнии, лeгкo пpocчитывaeмoй на компьютере.
  4. Открытой, т.е. позволяющей ее модификацию. В заключение темы сделаем несколько замечаний.

Трудно ограничить область применения математического моделирования. При изучении и создании промышленных и военных систем практически всегда можно определить цели, ограничения и предусмотреть, чтобы конструкция или процесс подчинялись естественным, техническим и (или) экономическим законам.

Круг аналогий, которые можно использовать в качестве моделей, также практически неограничен. Следовательно, надо постоянно расширять свое образование в конкретной области, но, в первую очередь, в математике.

В последние десятилетия появились проблемы с неясными и противоречивыми целями, диктуемыми политическими и социальными факторами. Математическое моделирование в этой области пока еще проблематично. Что это за проблемы? Защита от загрязнения окружающей среды; предсказаний извержений вулканов, землетрясений, цунами; рост городов; руководство боевыми действиями и ряд других. Но, тем не менее, "процесс пошел", прогресс не остановим, и проблемы моделирования таких сверхсложных систем постоянно находят свое разрешение. Здесь следует отметить лидирующую роль отечественных ученых и, в первую очередь, академика Н. Н. Моисеева, его учеников и последователей.

Вопросы для самоконтроля

  1. Свойства сложных систем?
  2. Что такое моделирование?
  3. Что такое модель?
  4. Обоснуйте необходимость моделирования.
  5. На основе какой теории основано моделирование.
  6. Назовите общие классификационные признаки моделей.
  7. Нужно ли стремиться к абсолютному подобию модели и оригинала?
  8. Суть компьютерного моделирования?
  9. Классификация моделей по характеру процессов, протекающих в моделируемых объектах.
  10. Классификация моделей по характеру моделируемой стороны объекта.
  11. Виды абстрактных моделей?
  12. Сущность математического моделирования и его основных классов: аналитического и имитационного.
  13. Назовите этапы моделирования и дайте им краткую характеристику.
  14. Что такое адекватность модели? Дайте понятия изоморфизма и изофункционализма.
  15. Общие требования (внешние) к моделям.
  16. Внутренние свойства модели.
  17. Приведите примеры объектов и возможных их моделей в своей предметной области.




1. приоритетная задача экономической политики государства В практике государственного управления эконо
2. Воспитание детей в игре
3. выпуск денег и эмиссия денег
4. Дипломная работа- Сбытовая политика на промышленном предприятии
5. А ЯВ Соколов доктор экономических наук профессор Бухгалтерский учет 1992 8 с
6. тысячу маленьких спринтов
7. Первый день в школе Опять
8. Карл Фридрих Гаусс
9. Гегельфонд 624 стр
10. Архитектурные памятники Казанского Кремля
11. на тему- Небесный зоопарк
12. Курсовая работа- Кредиты и их экономическая сущность
13. Курсовая работа- Форма и системы оплаты труда
14. директора по УР Агафонов А
15. Фізика Студент курсу групи Спеціальність
16. Погрешности при измерениях
17. раскрыть и описать общелингвистические основы перевода т.
18. по теме- Строение и свойства белков Билет 1 1
19. тематической статистике ldquo;Первичная обработка выборочных данныхrdquo; Задание xx
20. 10 Возможно здесь другое слово согласованном непротиворечивом Было- cceptbleКаждый ли Ведь есть объектыз