Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
36 Тиристорные пускатели асинхронных двигателей. Принцип работы, структурная схема, основные параметры. Комбинированные пускатели.
В современной электроэнергетике в условиях повышенных требований к энергопотребителям все большее применение находят электронные устройства для запуска асинхронных электродвигателей.
Отличительная особенность электронных устройств заключается в том, что с их помощью осуществляется управление запуском электродвигателя, в результате работа двигателя оптимальным образом соответствует нагрузке, создаваемой присоединенным исполнительным механизмом.
Использование тиристорных пускателей, являющихся самыми надежными электронными устройствами для запуска асинхронных двигателей, дает возможность:
Применение позволяет:
По сравнению с контактными аппаратами бесконтактные имеют преимущества:
- не образуется электрическая дуга, оказывающая разрушительное воздействие на детали аппарата; время срабатывания может достигать небольших величин, поэтому они допускают большую частоту срабатываний (сотни тысяч срабатываний в час),
- не изнашиваются механически,
В то же время, у бесконтактных аппаратов есть и недостатки:
- они не обеспечивают гальваническую развязку в цепи и не создают видимого разрыва в ней, что важно с точки зрения техники безопасности;
- глубина коммутации на несколько порядков меньше контактных аппаратов,
Тиристорный однополюсный контактор
Для включения контактора и подачи напряжения на нагрузку должны замкнуться контакты К в цепи управления тиристоров VS1 и VS2. Если в этот момент на зажиме 1 положительный потенциал (положительная полуволна синусоиды переменного тока), то на управляющий электрод тиристора VS1 будет подано через резистор R1 и диод VD1 положительное напряжение. Тиристор VS1 откроется, и через нагрузку Rн пойдет ток. При смене полярности напряжения сети откроется тиристор VS2, таким образом, нагрузка будет подключена к сети переменного тока. При отключении контактами К размыкаются цепи управляющих электродов, тиристоры закрываются и нагрузка отключается от сети.
Схема электрическая однополюсного контактора
Бесконтактные тиристорные пускатели
Для включения, отключения, реверсирования в схемах управления асинхронными электродвигателями разработаны тиристорные трехполюсные пускатели серии ПТ. Пускатель трехполюсного исполнения в схеме имеет шесть тиристоров VS1, …, VS6, включенных по два тиристора на каждый полюс. Включение пускателя осуществляется посредством кнопок управления SB1 «Пуск» и SB2 «Стоп».
Бесконтактный трехполюсный пускатель на тиристорах серии ПТ
Схема тиристорного пускателя предусматривает защиту электродвигателя от перегрузки, для этого в силовую часть схемы установлены трансформаторы тока ТА1 и ТА2, вторичные обмотки которых включены в блок управления тиристорами.
37. Тиристорыне преобразователи частоты с непосредственной связью (НПЧ). Получение низкочастотного тока и напряжения.
Исторически первыми появились преобразователи с непосредственной связью в которых силовая часть представляет собой управляемый выпрямитель и выполнена на не запираемых тиристорах. Система управления поочередно отпирает группы тиристотров и подключает статорные обмотки двигателя к питающей сети
Таким образом, выходное напряжение преобразователя формируется из «вырезанных» участков синусоид входного напряжения.. На входе преобразователя действует трехфазное синусоидальное напряжение uа, uв, uс. Выходное напряжение uвых имеет несинусоидальную «пилообразную» форму, которую условно можно аппроксимировать синусоидой (утолщенная линия). Частота выходного напряжения не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 30 Гц. Как следствие малый диапазон управления частоты вращения двигателя (не более 1 : 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.
Использование не запираемых тиристоров требует относительно сложных систем управления, которые увеличивают стоимость преобразователя.
«Резаная» синусоида на выходе преобразователя является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению к.п.д. системы в целом.
Преобразователи этого класса делятся по типу силовых вентилей на преобразователи с естественной и преобразователи с принудительной коммутацией.
В преобразователях с непосредственной связью с естественной коммутацией (циклоконверторах) силовая часть собрана на быстродействующих тиристорах. Тиристорный блок может быть собран по различным схемам. Наиболее часто встречается нулевая, мостовая, встречно-параллельная или перекрестная схема, с совместным или раздельным управлением. В промышленности чаще всего применяют мостовую схему. Пример структурной силовой схемы тиристорного частотного преобразователя с непосредственной связью и структурная схема мостового частотного преобразователя показана на рисунке.
Достоинства преобразователя частоты с непосредственной связью с естественной коммутацией
Достоинства НПЧ определяются его относительно простой конструкцией. К ним относятся:
Благодаря блочно-модульной конструкции частотные преобразователи с непосредственной связью имеют возможность неограниченно наращивать мощность НПЧ, удобны в эксплуатации и при создании горячего резерва;
Основные недостатки частотных преобразователей с непосредственной связью
Недостатки частотных преобразователей НПЧ связаны с простотой их конструкции. В таких преобразователях существует ограничение максимальной выходной частоты. Максимальная выходная частота не может превышать 70% частоты питающей сети. Другим препятствием для широкого применения НПЧ, является низкий коэффициент мощности и несинусоидальность выходного напряжения. Высокая сложность цепей управления, обуславливает применение НПЧ в тихоходных синхронных и асинхронных электроприводах средней и большой мощности.
Частотные преобразователи с принудительной коммутацией и непосредственной связью с сетью
НПЧ с принудительной коммутацией реализованы на полностью запираемых ключах. В качестве таких ключей используются транзисторы или запираемые тиристоры. Управление этими ключами осуществляется на принципе широтно-импульсной модуляции. Пример построения силовой схемы преобразователя частоты показана на рисунке.
В такой схеме включения любую фазу сети можно непосредственно подключить к любой фазе двигателя.
В современных системах управления электроприводами используются два типа частотных преобразователей.